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Abstract 

MT systems, as well as other translation technologies, inherit and spread bias from the data 

they are trained on, reflecting societal bias. Gender bias is by now a primary issue in NLP 

research, and it is of utmost importance to analyse it in light of the widespread use of these 

technologies by the general public. Specifically, the use of masculine generics (MG) is one of 

the most prominent vectors of gender bias in Italian. In this paper, gender bias and MG are 

discussed in relation to English-Italian translations performed by MT systems. Moreover, the 

performance of four different models trained on three different data representations is 

compared in order to train a gender classifier with the aim of identifying Italian translations that 

use MG when translating English gender-neutral sentences. This is a pilot project which is part 

of a larger study whose final aim is to train a gender-neutral re-writer for Italian MT output.   

1. Introduction 

1.1. Gender bias in MT 

With the development of machine translation (MT) systems and the fast improvement of their 

performance, as well as with the availability of free-to-use systems, this technology has 

become more and more common and accessible to the general public. While this allows for 

fast and easy communication among people and communities who do not speak the same 

languages, it is crucial to seriously take into consideration and tackle the problem of bias. 

A specific type of bias which is receiving more and more attention – especially in relation 

to MT – is gender bias. Following the definitions by Savoldi et al. (2021), bias is considered as a 

skewed representation of reality which results in the systematically unfair treatment of 
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different groups of people. It is inherited by language models from the data they are trained on, 

which reflect an unfair society (pre-existing bias); moreover, it can be further exacerbated by 

specific choices made when building the models (technical bias). Specifically, gender bias 

entails a stereotypical representation of gender roles and the under-representation of women 

and other groups (including queer and non-binary people).   

Gender bias is a particularly relevant problem in MT because different languages have 

vastly different gender systems, which makes the translation of gender a complex task. 

Furthermore, gender is a fundamental part of an individual’s identity, and for this reason, 

overlooking this issue not only contributes to the erasure of non-conforming gender identities, 

but it can also have a significantly negative psychological impact, notably through 

misgendering (i.e., addressing someone with the wrong gender: see e.g., Lardelli & Gromann, 

2023b). Users who are part of groups subject to gender bias are thus more likely to have an 

unpleasant experience when using MT systems (emerging bias: Savoldi et al., 2021).  

Finally, as Gromann et al. (2023) point out, with MT systems being more and more 

commonly used, their impact is even more widespread since MT output extends to contents 

that are not explicitly marked as such, which means that users might not be aware they are 

consuming it. For these reasons, introducing non-binary language in MT systems can have a 

positive impact on the representation of non-conforming identities.  

In the next paragraph, gender bias will be discussed in relation to the problem of 

translating gender from English to Italian.   

1.2. Masculine generics in Italian 

While English is considered as a notional gender language, Italian – as most romance 

languages – is a grammatical gender language (Savoldi et al., 2021). This means that gender in 

Italian is marked through a set of morphological suffixes which are repeated many times across 

different parts of speech in the same sentence. On the other hand, English has some gender-

specific words (e.g., noun pairs [mother-father], derivational [actor-actress] and compound 

[chairman-chairwoman] nouns, and pronouns [he-she]), but gender is rarely marked through 

morphological features.  

For this reason, when translating an English sentence with no explicit gender marks or 

gender-specific words to a grammatical gender language such as Italian, the translator will 

have to decide which gender to use in the target sentence and use the corresponding gender 



 

3 
 

marks in all the words that are related to the same referent. Most of the time, this decision will 

be based on context (e.g., according to the gender of the person being referred to, if known). 

However, the masculine gender is usually the default choice when context is missing (e.g., the 

referent is not a specific person, or is a group of people, etc.), or even when it is available, in 

some specific cases (see below); furthermore, when non-binary people are involved, Italian 

translations tend to use gendered pronouns (masculine or feminine), especially since non-

binary issues are still not prominent in the Italian debate around gender bias in language 

(Lardelli & Gromann, 2023b).  

The idea that the masculine gender is the default choice and that it serves as a neutral 

form results in the use of masculine generics (MG). This term identifies masculine forms used 

in a “generic” way, to refer to individuals and groups of unknown, irrelevant (i.e., when the 

referent is not a specific person but rather a general group, e.g., “scientists”), or mixed genders, 

as well as, in some cases, to specific people who do not identify as men. In particular, the use 

of masculine titles – which some claim to be neutral (see Gheno, 2020) – to refer to women is 

at the same time a product and a cause of the marginalisation of women, since it is rooted in 

and contributes to under-representation (Giorcelli et al., 2015); interestingly, as Gheno (2020) 

points out, feminine titles are common for professions more strongly associated to women, 

while MG are the norm when it comes to positions of economic and political power. As a matter 

of fact, MG are far from being neutral, and cognitively, they are generally perceived as 

masculine (see Gheno, 2022: 395; Lardelli & Gromann, 2023b: 215).   

For all these reasons, gender bias has become a primary topic in MT and NLP research. 

Some examples of related work are provided in the next section.  

1.3. Related work 

Through their work based on participatory action research – bringing together stakeholders 

such as translators, MT experts, and queer people – Gromann et al. (2023) conclude that the 

ideal solution for gender-fair MT would be a customisable system that can resort to different 

strategies based on context. This framework challenges the one input – one output paradigm 

for MT, by recognising the possibility of providing more than one translation for one same 

source sentence based on and user necessities.  
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An early experiment in this sense, which inspired this project, is Fairslator1 (Měchura, 

2022), a plug-in for common freely available MT systems (DeepL, Google, Microsoft) that allows 

the user to intervene and resolve some ambiguities in the source text in order to effectively 

control different aspects of the MT output. These are the gender of ambiguous referents and 

the number and formality of second person pronouns (e.g., using plural/formal vous or 

singular/casual tu in French to translate the English ambiguous pronoun you); once the 

sentence has been translated by the MT system, a dialog opens where the user can solve the 

ambiguities detected in the source sentence. When it comes to gender, the user can tick the 

‘unknown gender’ box, and then two different strategies are offered: to use the ‘male default’ 

or ‘gender-neutral notation’ (which is based on gender-inclusive language for French).  

Fairlsator is mostly rule-based and does not use machine learning or artificial 

intelligence. This makes it an interesting project since the rules it is built on can be beneficial 

to the final performance of the tool. As a matter of fact, Gromann et al. (2023) also suggest 

incorporating rule-based elements in gender-fair systems to overcome the scarcity of training 

data as well as to accurately handle specific cases and re-inflection rules.  

Moreover, the necessity of introducing non-binary language in MT systems is proved, for 

example, by Lauscher et al. (2023), who report that most systems produce low-quality output 

and are prone to misgendering when dealing with neo-pronouns.   

Another example that inspired this project is Piergentili et al.’s (2023) work; they release 

a challenge set for the evaluation of English to Italian translation in terms of gender bias (details 

are provided in §3), and augment it to train a gender classifier with the same goals.  

This project is inspired by the work discussed above as well as by other examples, and 

it is discussed in more detail in the next section.  

1.4. This project 

In the context of what described until this point, the aim of this project is to tackle the problem 

of gender bias and of masculine generics in the Italian language. Specifically, it focuses on the 

automatic translation of gender-neutral English sentences into Italian, since most MT systems 

use MG as their default behaviour when translating a gender-neutral sentence. This is a 

frequent scenario since Italian is a grammatical gender, highly morphological language, where 

gender is often explicit and every word related to the same referent has to be inflected 

 
1 https://www.fairslator.com/ 

https://www.fairslator.com/
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according to the referent’s gender. As a whole, this project emphasises the importance of 

improving visibility of all gender identities in texts generated by MT systems; moreover, in this 

context, MG are considered as a grammatical as well as a translation error, since generally, 

they do not accurately represent the referents’ gender (Giorcelli et al., 2015: 14) and are the 

result of incorrect assumptions made by MT systems based on the most frequent examples 

found in their training data (Měchura, 2022). They are thus to be avoided as much as possible.  

The creation of the gender classifier described here is a pilot project, part of a larger 

master’s degree final project, with the ultimate goal of creating an automatic re-writer aimed 

at post-editing automatic Italian translations of gender-neutral English source sentences by 

avoiding the use of MG and making them gender-neutral (see Lardelli & Gromann, 2023a). The 

classifier is expected to act as a filter during two different phases: 

• firstly, during the collection of a larger training dataset for the re-writer, in order to only 

collect sentences containing MG; 

• secondly, when using the re-writer, in order to filter out sentences that do not need to 

be converted. 

Overall, the goal of the project is to provide better translations of English source 

sentences that are ambiguous in terms of gender, and ultimately, to contribute to research on 

gender-fair translation technologies, by mitigating gender bias in MT systems as well as 

challenging gender binarism and the use of the default masculine in Italian.  

More details of the data used to train the classifier discussed in this report are provided 

in the next section.  

2. Data 

The classifier was trained on a modified version of the GeNTE corpus2. The original dataset 

contains 1500 sentence triplets following the structure: English source sentence – Italian 

gendered translation – Italian neutral translation. The original source sentences and gendered 

translations were collected from the Europarl corpus, while the neutral translations were 

created by linguists based on specific instructions. 750 English source sentences contained in 

 
2 https://mt.fbk.eu/gente/  

https://mt.fbk.eu/gente/
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the dataset are gender-neutral, while 375 only contain masculine gender marks, and another 

375 only contain feminine gender marks.  

To build GeNTE, some modifications to the original translations were carried out to fit the 

necessities of evaluating the translation of gender by MT systems. Most notably, some of the 

gendered translations were duplicated and then their referents were converted to the opposite 

gender (either masculine or feminine) in order to balance the data: for this reason, some of the 

neutral translations are repeated since the source sentences were not duplicated. Finally, the 

new, gender-neutral translations were created and added to the dataset. For more details on 

the creation of this dataset, see Piergentili et al. (2023).  

It is important to note that the gender-neutral translations in the dataset adopt a gender-

neutral approach or indirect non-binary language (Lardelli & Gromann, 2023b; Savoldi et al., 

2021), which means that they do not contain any neo-morphemes or neo-pronouns. Rather, 

they leverage the epicene words and phrases available in standard Italian, i.e., words that can 

be grammatically masculine or feminine, but that can be used to refer to human referents of 

any gender. In this way, the gender-neutral translations contain no explicit gender information 

just like the source sentences, while avoiding the use emerging strategies that are not (yet) 

considered as standard nor widely adopted in Italian. Moreover, the only words that differ from 

the reference (gendered) translations are those that carry gender information.  

For these reasons, this dataset was judged ideal for learning the task of recognising 

sentences that contain MG. Additionally, the type of texts that this collection represents is 

particularly relevant for the analysis of gender bias and MG (see Piergentili et al., 2023). 

Administrative and legal texts have a specific importance because: 

1. they cater to diverse groups of citizens who must be recognised and represented by 

their institutions; 

2. laws and norms have a direct impact on the lives of the people they are addressed to; 

3. on the ground of concerns over clarity and conciseness, they often resort to the use of 

MG and they are resistant to change (Giorcelli et al., 2015). 

Since GeNTE was originally intended as a test set for the evaluation of gender-neutral 

translation in MT systems, it was further modified to better fit the context of this project. Firstly, 

as some gendered translations contained some or only feminine referents, these were turned 

into the masculine gender, in order for all these sentences to only contain MG. Moreover, since 
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the original dataset was artificially augmented as discussed above, most of the neutral 

translations were repeated: for this reason, all the neutral translations corresponding to 

originally feminine reference translations (which resulted from duplicated and converted 

masculine translations) were discarded.  

The final dataset used for this study thus contains 1125 masculine, 1125 neutral, and 

375 feminine sentences. Since the classifier is only intended to distinguish between sentences 

that contain MG and sentences that do not, masculine sentences are considered as positive 

instances (1125 sentences), while neutral and feminine sentences are considered together as 

negative instances (1500 sentences).   

The original dataset in .xlsx format was manually modified to meet the needs of this 

project, and later processed through a Jupyter notebook in Python, using Google’s Colab 

platform3. In order to process the dataset correctly, each sentence was stored in a separate .txt 

file, and in two separate directories: one for the positive subset, and one for the negative subset. 

When loading the corpus files, a label was attached to each sentence to identify it as negative 

(0) – i.e., not containing any MG – or positive (1).  

In the following section, the model architectures and dataset representations used to 

carry out the training of the classifier will be described.  

3. Models and representations 

3.1. Models 

Four different models were trained on three different types of dataset representations (§3.2), 

in order to determine which configuration led to the best performance.   

The tested architectures include two statistical models, namely, a Multinomial Naïve 

Bayes model (MNB) and a linear Support Vector Machine (SVM); and two neural networks (NNs), 

namely, a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) 

network. These models were trained on Term Frequency - Inverse Document Frequency (TF-

IDF) vectors and on Word2Vec (W2V) and fastText (FT) embeddings. All the models were built, 

trained, and tested through a Jupyter notebook as already mentioned, mainly using Sci-kit 

Learn4  for statistical models and Keras5 for NNs.  

 
3 https://colab.google/  
4 https://scikit-learn.org/stable/about.html; see Pedregosa et al. (2011) 
5 https://keras.io/about/  

https://colab.google/
https://scikit-learn.org/stable/about.html
https://keras.io/about/
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Table 1 shows the basic architectures for the two NNs. Other hyperparameters were 

automatically tuned as explained further below.  

Model (Sequential()) Layers compile() method parameters 

CNN 

• Convolutional layer 

(padding=’same’, 

strides=1, 

activation=’relu’) 

• GlobalMaxPooling1D 

• hidden Dense layer (300) 

• Dropout layer 

• Activation layer (sigmoid) 

• output Dense layer (1) 

• optimizer algorithm: Adam 

• loss algorithm: binary cross 

entropy 

LSTM 

• LSTM layer 

• Dropout layer 

• Flatten layer 

• output Dense layer (1) 

• optimizer algorithm: RMSprop 

• loss algorithm: binary cross 

entropy 

Table 1: NNs architecture summary 

The NNs were built and trained through KerasTuner6 in order to automatically tune and 

find the best hyperparameters using the RandomSearch algorithm. A specific tuner was 

created for each model configuration and run for 10 trials; finally, the best model and 

hyperparameters were retrieved based on the lowest validation loss reached by that 

configuration. Each trial was set to train the model for 10 epochs, but early stopping was 

applied to stop training if the validation loss stopped decreasing for 2 consecutive epochs, and 

then restore the weights at the best epoch. After finding the best model for each configuration, 

some models were showing evidence of over-fitting; for this reason, they were re-trained from 

scratch, thus discarding the best model found by the tuner. The same criteria in terms of 

epochs and early stopping were followed, while other parameters were changed.  

The hyperparameters that were tuned for each NN type are reported in Table 2, along 

with the range of possible values for each parameter and the best value found by the tuner, as 

well as the manually set values for models that were eventually built and trained from scratch.  

 
6 https://keras.io/keras_tuner/ 

https://keras.io/keras_tuner/
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Model type Hyperparameter Range Representation Best value 
Manually 

set value 

CNN 

Filters 100-500 

TF-IDF 350 N/A 

W2V 100 N/A 

FT 250 N/A 

Kernel size 3-7 

TF-IDF 5 N/A 

W2V 4 N/A 

FT 3 N/A 

Dropout 0.1-0.5 

TF-IDF 0.3 N/A 

W2V 0.4 N/A 

FT 0.4 N/A 

Learning rate 
0.000001-

0.01 

TF-IDF 0.001 N/A 

W2V 0.001 N/A 

FT 0.01 N/A 

Batch size 16, 32 

TF-IDF 16 N/A 

W2V 16 N/A 

FT 16 N/A 

LSTM 

Units 50-250 

TF-IDF 50 50 

W2V 120 50 

FT 250 50 

Dropout 0.1-0.5 

TF-IDF 0.2 0.5 

W2V 0.4 0.2 

FT 0.3 0.2 

Learning rate 
0.000001-

0.01 

TF-IDF 0.01 
0.001 

(default) 

W2V 
0.001 0.001 

(default) 

FT 0.0001 
0.001 

(default) 

Batch size 16, 32 

TF-IDF 16 32 

W2V 16 32 

FT 32 32 

Table 2: Tuned hyperparameters for each NN architecture 

3.2. Dataset representations 

As mentioned above, the models were trained on three different representations of the dataset, 

including one word count representation (TF-IDF) and two different word embeddings 
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(Word2Vec and fastText). The TF-IDF vectors were created through an original Python function, 

while the Italian Word2Vec and fastText pre-trained embeddings were loaded and employed 

through gensim7.  

TF-IDF vectors represent the co-occurrences of words in a document or sentence. The TF-

IDF weight calculated for each token is the product of its token frequency (i.e., the number of 

times it appears in the document) and its inverse document frequency (i.e., the number of 

documents containing it divided by the total number of documents in the corpus). In this 

project, TF-IDF scores were calculated at the sentence-level. Moreover, two different data 

structures were used based on the type of model: 

• for the statistical models, a 2D array was used, featuring a 1D vector of token TF-IDF 

weights for each individual sentence (where each token is represented by a single float); 

• for the NNs, a 3D array was created instead, where each token is represented by a n-

dimensional vector containing its TF-IDF weights for all sentences; each word vector 

was then padded or truncated based on the average number of features.  

On the other hand, Word2Vec (Mikolov et al., 2013) and fastText (Grave et al., 2018) are 

algorithms that create word embeddings representing semantic relations among the words in 

a text corpus; while Google’s Word2Vec vectors are only available for English, fastText provides 

pre-trained vectors for 157 languages. For this study, the Italian Word2Vec pre-trained 

embeddings8  developed by Di Gennaro et al. (2021) and the fastText pre-trained embeddings 

for Italian9  were used.  

Two different data structures were created also for word embeddings, following the same 

principle described above for TF-IDF vectors: 

• for the NNs, the default 3D W2V/FT vectors were used, where each token is represented 

by a 300-dimensional vector; 

• for the statistical models, the datasets were converted into 2D arrays, where each token 

in a sentence is represented by the average feature of the W2V/FT vector for that token 

(each token is thus represented by a single float). 

Input lengths (maxlen) were set as the length of the longest vector for each representation.  

 
7 https://radimrehurek.com/gensim/index.html; see Řehůřek & Sojka (2010) 
8 https://mlunicampania.gitlab.io/italian-word2vec/  
9 https://fasttext.cc/docs/en/crawl-vectors.html  

https://radimrehurek.com/gensim/index.html
https://mlunicampania.gitlab.io/italian-word2vec/
https://fasttext.cc/docs/en/crawl-vectors.html
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Table 3 summarises the vector shape for each representation. In this respect, it is important 

to note that when using fastText embeddings, there are actually no out-of-vocabulary (OOV) 

words, since the embeddings for words that do not appear in the pre-trained vectors are 

created based on embeddings for character n-grams (Grave et al., 2018). As it appears in Table 

3, this resulted in longer sequences with fastText vectors when compared to Word2Vec, since 

for the latter, unknown words were discarded. For reference, the longest sentence in the 

dataset has 182 tokens. Each dataset contains one vector for each sentence in the corpus, i.e., 

2625 vectors.  

Representation Maxlen 
Embedding dimensions 

(for 3D arrays) 
Vocabulary (tokens) 

TF-IDF 72 373 6,438 

Word2Vec 161 300 618,224 

fastText 182 300 2,000,000 

Table 3: Summary of dataset representation features 

The third dimension (embedding dimensions or word vector length) only applies to NNs. 

As explained above, statistical models were trained on simpler data structures where vectors 

have as many features as there are unique words in the dataset, i.e., 7996 (see the attached 

notebook).  

The performance reached by each model architecture – dataset representation 

configuration is reported and discussed in §4 and §5, respectively.  

4. Results 

Table 4 shows the two statistical models’ performance on the test set for each dataset 

representation. For each metric, the weighted average is shown; bold and underlined figures 

indicate the best performance for one type of model, while red characters identify the best 

performance overall (statistical and neural models are considered separately). More details 

can be found in the notebook, and performance on each class is reported in the confusion 

matrices further below (Tables 6-9).  
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Model Precision Recall F1 Accuracy 

NB 

TF-IDF 
0.61 0.59 0.52 0.5904 

NB  

Word2Vec 
0.30 0.55 0.39 0.5504 

NB  

fastText 
0.30 0.55 0.39 0.5504 

SVM 

TF-IDF 
0.78 0.77 0.76 0.7676 

SVM 

Word2Vec 
0.30 0.55 0.39 0.5504 

SVM  

fastText 
0.30 0.55 0.39 0.5504 

Table 4: Summary of statistical models' performance on test set for each representation 

Table 5 summarises each NN’s performance on the test set at its best epoch, i.e., after 

tuning and training with KerasTuner or after manual training where applicable. All the metrics 

are computed at the best epoch of the best model, and figures are shown as the weighted 

average for that metric; the specific metrics for each class can be found in the attached 

notebook. Bold and underlined figures indicate the best performance in one type of model, 

while red characters identify the best performance overall (statistical and neural models are 

considered separately).  

Model 
Re-

trained 

Best 

epoch 
Precision Recall F1 Accuracy Loss 

CNN  

TF-IDF 
no N/A10 0.72 0.72 0.72 0.7180 0.5183 

CNN 

Word2Vec 
no N/A10 0.90 0.90 0.90 0.9009 0.2551 

 
10 It was not possible to retrieve the number of epochs for the models trained with KerasTuner. 
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CNN 

fastText 
no N/A10 0.89 0.89 0.89 0.8876 0.2451 

LSTM  

TF-IDF 
yes 10 0.72 0.71 0.71 0.7123 0.5179 

LSTM 

Word2Vec 
yes 3 0.79 0.78 0.77 0.7771 0.4436 

LSTM 

fastText 
yes 6 0.76 0.76 0.76 0.7638 0.4646 

Table 5: Summary of NNs’ performance on test set for each representation 

As mentioned, the above figures do not explicitly state the different performance of each 

model in relation to each class in the dataset. To account for this difference – which is quite 

high for some models, as discussed in §5 – confusion matrices (Tables 6-9) show the 

proportion of correct and wrong predictions for each class based on the gold standard, 

calculated at the best epoch of the best model. More details are available in the attached 

notebook.  

NB_TF-

IDF 

Model 

predictions 

 
NB_W2V 

Model 

predictions 

 
NB_FT 

Model 

predictions 

Gold 

standard 
0 1 

 Gold 

standard 
0 1 

 Gold 

standard 
0 1 

0 266 23  0 289 0  0 289 0 

1 192 44  1 236 0  1 236 0 

Total 458 67  Total 525 0  Total 525 0 

Table 6: Confusion matrices for NB models with each representation 

SVM_TF-

IDF 

Model 

predictions 

 
SVM_W2V 

Model 

predictions 

 
SVM_FT 

Model 

predictions 

Gold 

standard 
0 1 

 Gold 

standard 
0 1 

 Gold 

standard 
0 1 

0 260 29  0 289 0  0 289 0 

1 93 143  1 236 0  1 236 0 

Total 353 172  Total 525 0  Total 525 0 

Table 7: Confusion matrices for SVM models with each representation 
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CNN_TF-

IDF 

Model 

predictions 

 
CNN_W2V 

Model 

predictions 

 
CNN_FT 

Model 

predictions 

Gold 

standard 
0 1 

 Gold 

standard 
0 1 

 Gold 

standard 
0 1 

0 229 60  0 261 28  0 254 35 

1 88 148  1 24 212  1 24 212 

Total 317 208  Total 285 240  Total 278 247 

Table 8: Confusion matrices for CNNs with each representation 

LSTM_TF-

IDF 

Model 

predictions 

 
LSTM_W2V 

Model 

predictions 

 
LSTM_FT 

Model 

predictions 

Gold 

standard 
0 1 

 Gold 

standard 
0 1 

 Gold 

standard 
0 1 

0 199 90  0 265 24  0 230 59 

1 61 175  1 93 143  1 65 171 

Total 260 265  Total 358 167  Total 295 230 

Table 9: Confusion matrices for LSTM networks with each representation 

5. Discussion, limitations & future work 

The main problem found in this study is that some models clearly over-generalise to the 

majority class (i.e., 0). This might be due to class imbalance, even though the small difference 

in the number of samples (1125 vs. 1500 sentences in positive and negative class, respectively) 

was not expected to cause such behaviour. To solve this issue, it would be ideal to address 

class imbalance by equally splitting the dataset so as to have a 50-50 proportion of positive 

and negative instances in both the training and test sets, or by oversampling the minority class 

(e.g., by finding more sentences containing MG or by randomly duplicating samples already 

present in the minority class) (Yu, 2021).  

Looking at the confusion matrices, this behaviour can be observed in all statistical 

models trained with word embeddings, which might be too complex representations for those 

models. However, this was also the case with all LSTM networks trained with KerasTuner, 

which is why, eventually, they were all trained from scratch. As shown in Table 2, when training 

from scratch, most hyperparameters were changed in different ways, which allowed for much 
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better performance. The reason for LSTM networks trained with KerasTuner consistently over-

fitting has to be investigated in more depth.  

When it comes to the best models, it is clear from Table 5 as well as from the confusion 

matrices that the best performance is achieved by CNNs overall; as for statistical models, the 

SVM trained on TF-IDF vectors reached much better performance (validation accuracy: 0.7676) 

compared to the NB model trained on the same representation (validation accuracy: 0.5904), 

as it appears from Table 4 and the confusion matrices.  

As opposed to statistical models, word embeddings seem to guarantee a better 

performance for NNs; the best CNN and the best LSTM network were both trained with W2V, 

even though the performance achieved with FT is very close. This result is contrary to 

expectations: since FT embeddings allow to create vectors for all tokens, while W2V 

embeddings discard unknown tokens, the former were expected to result in better 

performance.  

The best model overall is the CNN trained on W2V embeddings (validation accuracy: 

0.9009). It reaches the best performance in all metrics, except for validation loss (0.2551), 

which is slightly lower for the CNN trained on FT (0.2451), whose accuracy however stops at 

0.8876. When looking at confusion matrices, it appears that CNNs make the less wrong 

predictions overall; however, the most balanced predictions are those performed by the LSTM 

network trained on TF-IDF vectors, with a difference of only 5 predictions between the two 

classes (see Table 9).  

Another aspect to be explored would be the optimal input length (maxlen), which was 

set as the length of the longest vector. As found by Yu (2021: 7) on a similar project, longer 

vectors seem to be an important factor for achieving better performance with CNNs; however, 

according to her study, “the best-performing maxlen is [generally] not the mean or max sample 

length, but the number of tokens in the majority of samples”.   

Finally, the models’ performance on real-world data still has to be analysed. Specifically, 

since the MG sentences used to train the models in this project (after editing the GeNTE dataset 

as discussed in §2) only contain masculine gender marks, the models might not be able to 

correctly identify sentences containing more than one set of gender marks, which might be a 

common situation in real-world conditions. This limitation is due to the fact that the data used 

in this project were not meant for this specific use case, but rather, to test MT systems’ 
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performance in a controlled framework (Piergentili et al., 2023). It would thus be ideal to re-

train the models on more complex data reflecting real-world conditions.  

6. Conclusion 

In this project, the identification of masculine generics (MG) in Italian was approached as a 

binary classification problem, where the positive instances are sentences containing MG and 

the negative instances are sentences that do not contain any (i.e., where human referents are 

addressed through gender-neutral words or feminine gender marks).  

A gender classifier was trained to recognise sentences containing MG. To this aim, four 

different models (Naïve Bayes, SVM, CNN, LSTM network) were trained on three different 

dataset representations (TF-IDF vectors and Word2Vec and fastText embeddings). After 

several experiments, the model reaching the best overall performance on the test set was a 

CNN trained on Word2Vec embeddings.  

This is a pilot project and several limitations to the study and its outcome were 

discussed. Most importantly, the models’ performance has yet to be tested on real-world 

conditions.  

Attached resources 

The following resources are attached to this report for reference: 

• a Jupyter notebook that was used to: 

o pre-process the dataset and collect data; 

o create dataset representations; 

o train and evaluate models. 

• the original GeNTE dataset;  

• the modified dataset that was used for this project; 

• the best model (CNN trained on W2V) in .keras format (containing its configuration and 

weights).  
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