
91258 / B0385
Natural Language Processing

Lesson 2. Tokens

Alberto Barrón-Cedeño
a.barron@unibo.it

01/10/2024
2024/2025

Table of Contents

1. Words

2. Normalisation

3. Representations

A. Barrón-Cedeño DIT, LM SpecTra 2024 2 / 25

Words

A. Barrón-Cedeño DIT, LM SpecTra 2024 3 / 25

Words
What is a word?

The basic element of language that carries an objective or practical
meaning, can be used on its own, and is uninterruptible

Speech The smallest sequence of phonemes that can be uttered in
isolation with objective or practical meaning

Text Sequence of graphemes (“letters”) [. . .] delimited by spaces
[. . .] or by other graphical conventions

https://en.wikipedia.org/wiki/Word (old version)

Simplistic operational definition
A word is a sequence of characters surrounded by spaces

Arguable, as multiple scholars claim; in particular across languages (Bender, 2013;
Haspelmath, 2011)

A. Barrón-Cedeño DIT, LM SpecTra 2024 4 / 25

http://www.dit.unibo.it
https://en.wikipedia.org/wiki/Word

Words
Lexicon

The set of all tokens (words!) in document d (or a corpus C)1

1In general, lowercase symbols represent single instances; uppercase ones represent
collections

A. Barrón-Cedeño DIT, LM SpecTra 2024 5 / 25

Words
Tokenisers

We can use a simple tokeniser, kindly provided by Church (1994)2

tokens = re.findall(’[A-Za-z]+’, txt)

Python provides a “similar” tool

tokens = txt.split ()

What if txt is the following?3

txt = """ Thomas Jefferson started building Monticello

at the age of 26."""

/ Let us see it working

2Refer to PBR / APS / P4P
3Example borrowed from Lane et al. (2019, p. 34)

A. Barrón-Cedeño DIT, LM SpecTra 2024 6 / 25

Words
Tokenisers

Building a better regular expression4

tokens = re.split(r’([-\s. ,;!?])+’, txt)

What if we have the following text?

txt = "Monticello wasn’t designated as UNESCO World Heritage

Site until 1987"

/ Let us see it working

4Borrowed from Lane et al. (2019, p. 43)
A. Barrón-Cedeño DIT, LM SpecTra 2024 7 / 25

Words
The NLTK library

• One of the leading platforms to work with human language data in
python

• Easy-to-use interfaces to over 50 corpora and lexical resources, such
as WordNet

• Suite of text processing libraries for classification, tokenization,
stemming, tagging, parsing [. . .]

http://www.nltk.org
A. Barrón-Cedeño DIT, LM SpecTra 2024 8 / 25

http://www.nltk.org

Words
The Spacy library

• “Industrial-strength Natural Language Processing”

• Support for 66+ languages

• Pre-trained word vectors and modules for tokenisation, lemmatisation,
tagging, parsing [. . .]

https://spacy.io
A. Barrón-Cedeño DIT, LM SpecTra 2024 9 / 25

Words
Installing NLTK and spacy

$ pip install --user -U nltk

$ pip install --user -U numpy

$ python

>>> import nltk

$ pip install --user -U spacy

$ python

>>> import spacy

A. Barrón-Cedeño DIT, LM SpecTra 2024 10 / 25

Words
Using (one of the) spacy tokenisers

loading the library

import spacy

downloading the model

import spacy.cli

spacy.cli.download("en_core_web_sm")

nlp = spacy.load("en_core_web_sm")

doc = nlp(txt)

print([token.text for token in doc])

/ Let us see it work

A. Barrón-Cedeño DIT, LM SpecTra 2024 11 / 25

Words
Using (one of) the NLTK tokenisers

from nltk.tokenize import TreebankWordTokenizer

tokenizer = TreebankWordTokenizer ()

sentence = "Monticello wasn’t designated as UNESCO World

Heritage Site until 1987"

tokenizer.tokenize(sentence)

A. Barrón-Cedeño DIT, LM SpecTra 2024 12 / 25

https://spacy.io

Normalisation

A. Barrón-Cedeño DIT, LM SpecTra 2024 13 / 25

Normalisation
Case folding

Ignoring differences in the spelling of a word which involves only
capitalisation (Lane et al., 2019, p. 54)

We know how to deal with this , don’t we?

PROS Tea==tea; the vocabulary is smaller

CONS The Joker is not a character any longer

/ Let us see it working

A. Barrón-Cedeño DIT, LM SpecTra 2024 14 / 25

Normalisation
Stemming

“Eliminate the small meaning differences of pluralisation or possessive
endings of words or [. . .] verb form” (Lane et al., 2019, p. 57)

import re

def stem(phrase):

return ’ ’.join([re.findall(’^(.*ss|.*?)(s)?$’,
word)[0][0].strip("’") for word in phrase.lower ()

.split()])

stem(’houses ’)

stem("Doctor House ’s calls")

stem("stress")

/ Let us see it working

A. Barrón-Cedeño DIT, LM SpecTra 2024 15 / 25

Normalisation
Stemming: Porter and Snowball

Once again, people have developed (and released) more sophisticated
stemming algorithms
https://tartarus.org/martin/PorterStemmer/

http://snowball.tartarus.org/

from nltk.stem.porter import PorterStemmer

stemmer = PorterStemmer ()

’ ’.join([stemmer.stem(w).strip("’") for w in

"dish washer ’s washed dishes".split()])

/ Let us see it working

A. Barrón-Cedeño DIT, LM SpecTra 2024 16 / 25

https://tartarus.org/martin/PorterStemmer/
http://snowball.tartarus.org/

Normalisation
Lemmatisation

Associating several words down to their semantic common root (adapted
from (Lane et al., 2019, p. 59))

PROS Stemming might alter the meaning of a word

CONS It is more expensive; it requires a knowledge base of
synonyms and endings, and part-of-speech tags

A. Barrón-Cedeño DIT, LM SpecTra 2024 17 / 25

Normalisation
Lemmatisation: re-use, re-use!

The NLTK way

import nltk

nltk.download(’wordnet ’)

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer ()

lemmatizer.lemmatize("better")

lemmatizer.lemmatize("better", pos="a")

The spacy way

doc = nlp("better")

print([token.lemma_ for token in doc])

/ Let us see them working

A. Barrón-Cedeño DIT, LM SpecTra 2024 18 / 25

Representations

A. Barrón-Cedeño DIT, LM SpecTra 2024 19 / 25

Representations
Vectors

An (Euclidean) vector is an entity endowed with a magnitude (the length
of the line segment (a, b)) and a direction (the direction from a to b).

https://en.wikipedia.org/wiki/Vector_(mathematics_and_physics)

https://en.wikipedia.org/wiki/Vector_space

A. Barrón-Cedeño DIT, LM SpecTra 2024 20 / 25

https://en.wikipedia.org/wiki/Vector_(mathematics_and_physics)
https://en.wikipedia.org/wiki/Vector_space

Representations
Bag of Words (BoW)

Turning words into numbers5

sentence = """ Thomas Jefferson began building

Monticello at the age of 26."""

sentence_bow = {}

for token in sentence.split():

sentence_bow[token] = 1

sorted(sentence_bow.items ())

/ Let us see it working

5From (Lane et al., 2019, p. 35)
A. Barrón-Cedeño DIT, LM SpecTra 2024 21 / 25

Representations
Bag of Words (BoW)

Using pandas (data structures for data analysis, time series, statistics)6

import pandas as pd

sentences = Thomas Jefferson began building Monticello at

the age of 26.\n"

sentences += "Construction was done mostly by local masons

and carpenters .\n"

sentences += "He moved into the South Pavilion in 1770.\n"

sentences += "Turning Monticello into a neoclassical

masterpiece was Jefferson ’s obsession ."

corpus = {}

for i, sent in enumerate(sentences.split(’\n’)):

corpus[’sent{}’.format(i)] = dict((tok , 1) for tok in

sent.split ())

df = pd.DataFrame.from_records(corpus).fillna(0).astype(int)

.T

df[df.columns [:10]]

/ Let us see it working
6From (Lane et al., 2019, p. 41)

A. Barrón-Cedeño DIT, LM SpecTra 2024 22 / 25

Representations
One-Hot Vectors

Turning words into numbers7

import numpy as np

sentence = "Thomas Jefferson began building Monticello at

the age of 26."

token_sequence = str.split(sentence)

vocab = sorted(set(token_sequence))

print(vocab)

num_tokens = len(token_sequence)

vocab_size = len(vocab)

onehot_vectors = np.zeros ((num_tokens , vocab_size), int)

for i, word in enumerate(token_sequence):

onehot_vectors[i, vocab.index(word)] = 1

’ ’.join(vocab)

onehot_vectors

7From (Lane et al., 2019, p. 35)
A. Barrón-Cedeño DIT, LM SpecTra 2024 23 / 25

Representations
One-Hot Vectors

Turning words into numbers8

import pandas as pd

pd.DataFrame(onehot_vectors , columns=vocab)

8From (Lane et al., 2019, p. 35)
A. Barrón-Cedeño DIT, LM SpecTra 2024 24 / 25

References

Bender, E. M.
2013. Linguistic Fundamentals for Natural Language Processing: 100
Essentials from Morphology and Syntax. Morgan & Claypool Publishers.

Church, K.
1994. UNIX for poets.

Haspelmath, M.
2011. The indeterminacy of word segmentation and the nature of
morphology and syntax. Folia Linguistica, 45.

Lane, H., C. Howard, and H. Hapkem
2019. Natural Language Processing in Action. Shelter Island, NY:
Manning Publication Co.

A. Barrón-Cedeño DIT, LM SpecTra 2024 25 / 25

	Words
	Normalisation
	Representations
	References

