

91258 / B0385 Natural Language Processing

Lesson 6. Term Frequency–Inverse Document Frequency

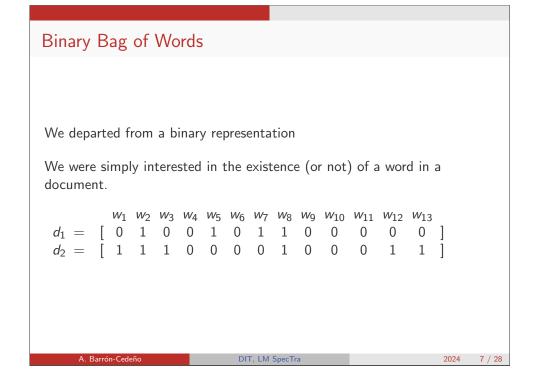
Alberto Barrón-Cedeño a.barron@unibo.it

16/10/2024

Previously		
 Pre-processing Pal// representation 		
 BoW representation One rule-based sent 		
 One statistical mod 	lel (Naive Bayes)	
A. Barrón-Cedeño	DIT, LM SpecTra	2024 3 / 28

Table of Contents			
1. From BoW to term fr	requency		
2. Zipf's Law			
3. Inverse Document Fre	equency		
A. Barrón-Cedeño	DIT, LM SpecTra	2024	2 / 28

Table of Contents				
1. From BoW to term f	requency			
2. Zipf's Law				
3. Inverse Document Fre	equency			
These slides cover rough	nly chapter 3 of Lane et a	ıl. (2019)		
A. Barrón-Cedeño	DIT, LM SpecTra		2024	4 / 28



Intuition		
 The frequency of a its relevance 	token t in a document d	is an important factor of
	ncy of a word in a docume ollection provides even bet	
A. Barrón-Cedeño	DIT, LM SpecTra	2024 6 / 28

"Counting" Bag of Words				
A word that appears often contributes more to the "meaning" of the				
document				
A document with many occurrences of "good", "awesome", "best" is more positive than one in which they occur only once				
$egin{array}{rcccccccccccccccccccccccccccccccccccc$				
Let us see				
Already a useful representation for diverse tasks, such as detecting spam and computing "sentiment"				

A. Barrón-Cedeño

2024 8 / 28

tf: Term Frequency

tf represents the number of times a word appears in a document (In general) the frequency of a word depends on the length of the document

- $\bullet~$ Shorter document $\rightarrow~$ lower frequencies
- Longer document \rightarrow higher frequencies

Ideally, our *counting* should be document-length independent.

tf: Term Frequency (Normalised) Playing with a longer text

- Loading frequencies into a dictionary
- Vectorising frequencies
- Normalising frequencies

tf: Term Frequency (Normalised)

Why normalising?

Example

word dog appears 3 times in d_1 word dog appears 100 times in d_2 Intuition: dog is way more important for d_2 than for d_1

 d_1 is an email by a veterinarian (300 words) d_2 is War & Peace (580k words) If normalised...

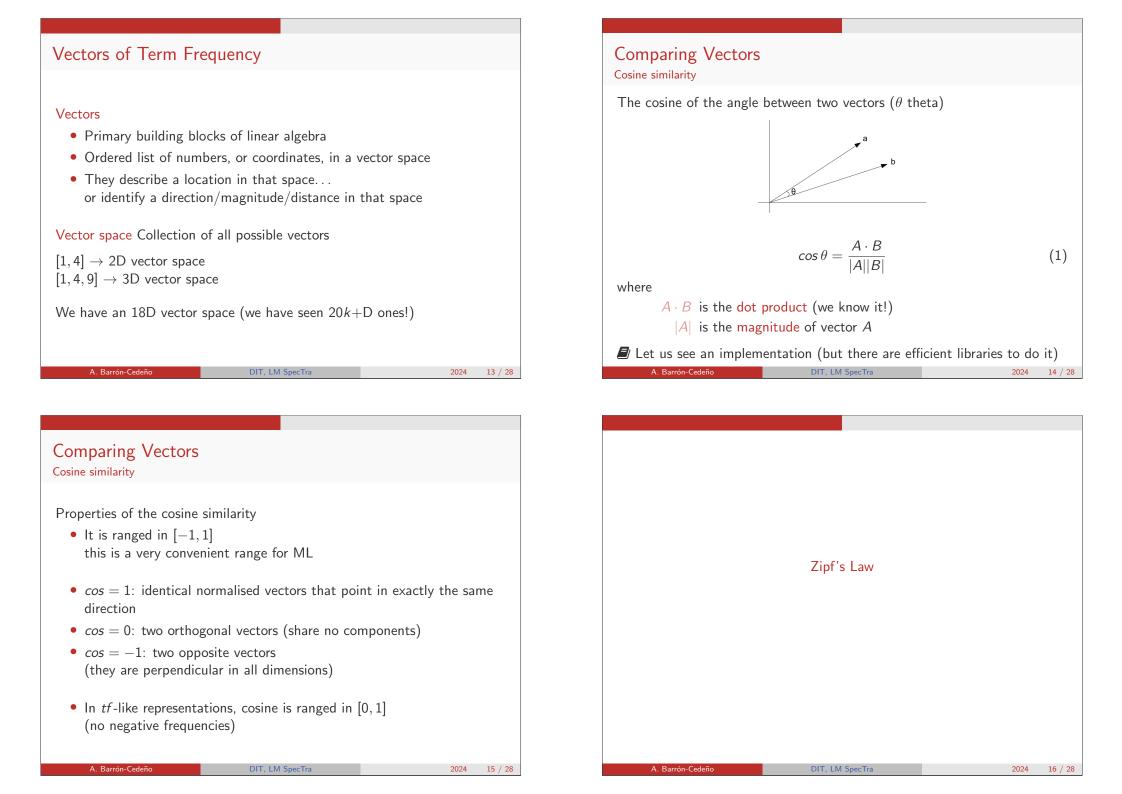
 $tf(dog, d_1) = \frac{3}{300} = 0.01$ $tf(dog, d_2) = \frac{100}{580,000} = 0.00017$

Reminder: normalised frequencies can be considered probabilities

┛ Let us see			
A. Barrón-Cedeño	DIT, LM SpecTra	2024	10 / 28

f: Cerm Erequency From a single to multiple documents • The vectors have to be comparable across documents → normalisation • Each position in the vectors must represent the same word This is when representations become sparse: a matrix packed with 0 Sparse vector: most of the elements are zero Dense vector: most of the elements are non-zero ✓ Let us see

2024



Zipf's Law

Given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table.¹

pos(w)	freq(w)
1st	k
2nd	k/2
3rd	k/3

The system behaves "roughly" exponentially

Examples of exponential systems: population dynamics and COVID-19

Let's see it for text

¹George K. Zipf; 1930s A. Barrón-Cedeño

DIT, LM SpecTra

Frequencies of the Brown corpu	us: <i>exp</i>	ected vs ac	ctual
	W	$f_{exp}(w)$	$f_{act}(w)$
	the	_	69,971
	of	34 985	36 412

Zinf's Law

	of	34,985	36,412		
	and	23,323	28,853		
	to	17,492	26,158		
	а	13,994	23,195		
	in	11,661	21,337		
	that	9,995	10,594		
	is	8,746	10,109		
	was	7,774	9,815		
	he	6,997	9,548		
	for	6,361	9,489		
	it	5,830	8,760		
	with	5,382	7,289		
	as	4,997	7,253		
	his	4,664	6,996		
A. Barrón-Cedeño		DIT, LM Spec	Tra	2024	18 / 28

Zipf's Law _{Stats}
 This distribution only holds with large volumes of data (not in a sentence, not in a couple of texts)
• By computing this distribution, we can obtain an <i>a priori</i> likelihood that a word <i>w</i> will appear in a document of the corpus

2024 17 / 28

idf–Inverse Document Frequency

Two ways (among many others) to count tokens

- *tf* per document
- *idf* across a full corpus

🖅 Let's see. . .

IDF How strange is it that this token appears in this document?

```
If w appears in d a lot, but rarely in any other d' \in D \mid d' \neq d w is quite important for d
```

┛ Let's see

A. Barrón-Cedeño

DIT, LM SpecTra

tf-idf

$$tf(t,d) = \frac{count(t,d)}{\sum_{t} count(t,d)}$$
(2)

$$df(t, D) = \log \frac{\text{number of documents in } D}{\text{number of documents in } D \text{ containing } t}$$
(3)

$$tfidf(t, d, D) = tf(t, d) * idf(t, D)$$
(4)

- The more often *t* appears in *d*, the higher the TF (and hence the TF-IDF)
- The higher the number of documents containing *t*, the lower the IDF (and hence the TF-IDF)

2024 21 / 28

IDF and Zipf

Let us assume a corpus D, such that |D| = 1M

- 1 document d ∈ D contains "cat" idf(cat) = 1,000,000/1 = 1,000,000
- 10 documents {d₁, d₂,..., d₁₀} ∈ D contain "dog" idf(dog) = 1,000,000/10 = 100,000

According to Zipf's Law, when comparing w_1 and w_2 , even if $f(w_1) \sim f(w_2)$, one will be exponentially higher than the other one!

We need the inverse of exp() to mild the effect: log()

$$idf(cat) = log(1,000,000/1) = log(1,000,000) = 6$$
$$idf(dog) = log(1,000,000/10) = log(100,000) = 5$$

Outcome The importance of a token in a specific document given its usage across the entire corpus.

"TF-IDF, is the humble foundation of a simple search engine" (Lane et al., 2019, p. 90)

🖅 Let's see

tf-idf

tf-idf Implementation

- We "hand-coded" the *tf-idf* implementation
- Optimised and easy-to-use libraries exist
- scikit-learn is a good alternative²

Let us see

²http://scikit-learn.org/. As usual, install it the first time; e.g., pip install scipy; pip install sklearn A. Barrón-Cedeño DIT, LM SpecTra 2024 25 / 28

Coming Next			
• Towards "semantic			
A. Barrón-Cedeño	DIT, LM SpecTra	2024	27 / 28

tf-idf

Final Remarks

tf-idf-like weighting...

- is the most common baseline representation in NLP/IR papers nowadays
- is in the core of search engines and related technology
- Okapi BM25 has been one of the most successful ones (Robertson and Zaragoza, 2009)
 - Okapi First system using BM25 (U. of London)
 - BM best matching
 - $25\,$ Combination of BM11 and BM15\,
- Cosine similarity is a top choice metric for many text vector representations.
- Nothing prevents you from weighting *n*-grams, for n = [1, 2, ...]A. Barrón-Cedeño DIT, LM SpecTra 2024 26 / 28

