

2024 3 / 20

1. Topic Vectors

2. Latent Semantic Analysis

Jumping from Chapter 3 to Chapter 4 of Lane et al. (2019)

Topic Vectors What for?

"[...] using the correlation of normalized frequencies with each other to group words together in topics to define the dimensions of new topic vectors." (Lane et al., 2019, p. 98)

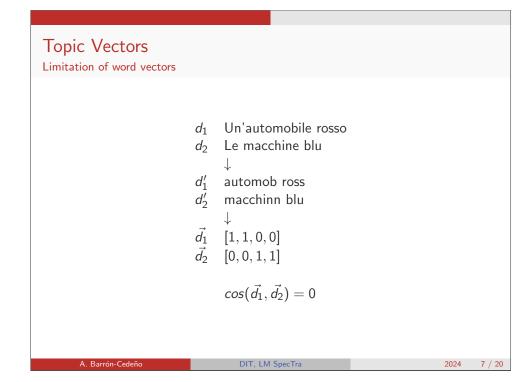
What can we achieve with this?

- Compare texts on the basis of *meaning* (not keywords)
- Search based on *meaning*
- Represent the subject of a statement/document or corpus
- Extract keywords

A. Barrón-Cedeño

DIT, LM SpecTra

2024 5 / 20



Topic Vectors Limitation of word vectors d_1 Una macchina rossa d_2 Le macchine blu stopwording + stemming d'_1 macchin ross d_2' macchin blu vectorisation $\vec{d_1}$ [1, 1, 0] $\vec{d_2}$ [1, 0, 1] $cos(\vec{d_1}, \vec{d_2}) > 0$ A. Barrón-Cedeño DIT, LM SpecTra 2024 6 / 20

Topic Vectors		
• We need to infer w	what $w \in d$ "means"	
• Indeed, we need to	infer what $\{w_k, w_{k+1}, \ldots\}$	$e \in d$ "mean"
• We need a <i>differen</i>	t kind of vector	
Word-topic vector One	vector represents one word	
	One vector represents one its word-topic vectors)	document (by
These models can deal	with polysemy (e.g., homo	nyms) at some extent
A. Barrón-Cedeño	DIT, LM SpecTra	2024 8 / 2

Common-Sense Topic Modeling

Scenario

- We are processing sentences about pets, Central Park, and New York
- Three topics: petness, animalness, cityness
- cat and dog should contribute similarly to petness
- NYC should contribute negatively to animalness
- apple should contribute mildly to cityness

topic	high	medium	low
Petness	cat, dog		NYC, apple
Cityness	NYC	apple	cat, dog

┛ Let us see

Example from (Lane et	al., 2019, p. 101–102)		
A. Barrón-Cedeño	DIT, LM SpecTra		

 Given:

 • A new 6D tf-idf vector

 • Our 3 × 6D matrix

 Multiply: 6D vector × [3 × 6]D matrix

 → 3D document vector

 ✓ Let us see

 Advantages

 • We can visualise 3D vectors

 • A 3D vector space is convenient for classification: it can be sliced with a hyperplane to divide it into classes

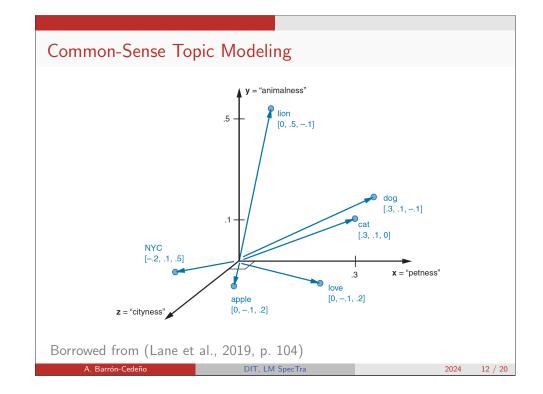
Common-Sense Topic Modeling

We have a 3×6 matrix: 3 topic vectors

		cat	dog	apple	lion	NYC	love	
petness	[.3	.3	0	0	2	.2]
animalness	[.1	.1	1	.5	.1	1]
cityness] [0	1	.2	1	.5	.1]

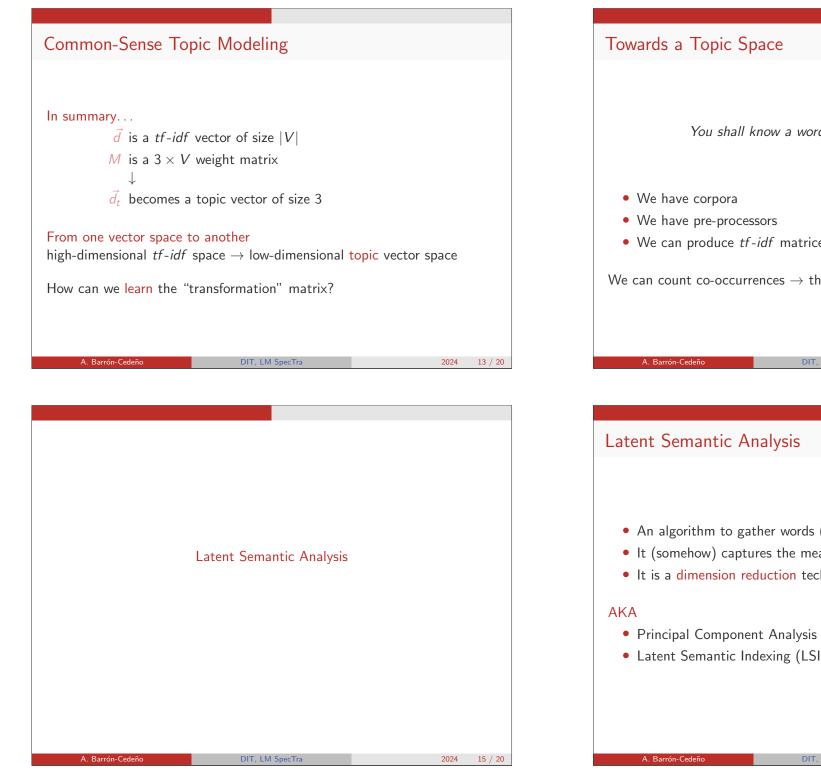
The relationships between words and topics can be "flipped": transposing the 3×6 matrix to produce topic weights for each word

			petness	animalness	cityness			
	cat	[.3	.1	0]		
c	dog	[.3	.1	1]		
ā	apple	[0	1	.2]		
I	ion	[0	.5	1]		
ſ	NYC	[2	.1	.5]		
I	ove	Ī	.2	1	.1	ĺ		
		-				-		
A. Barrón-Cedeñ	ĭo		DIT	, LM SpecTra			2024	10 / 20

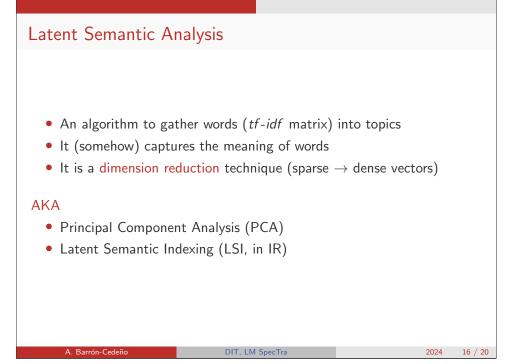


2024

9 / 20



<section-header><section-header><section-header><text><list-item><list-item><list-item><list-item><list-item><table-container>



Latent Semantic Analysis

Linear discriminant analysis (LDA)

A supervised algorithm (it requires labeled data)

Algorithm

1. Compute the centroid of the vectors in the class $% \left({{{\boldsymbol{x}}_{i}}} \right)$

2. Compute the centroid of the vectors not in the class

3. Compute the vector difference between the centroids

Centroid: average in a vector space

Basic algebra!

Let us see A. Barrón-Cedeño

DIT, LM SpecTra

• Training and Evaluation in Machine Learning

• More LSA (from 4.2, p 111)

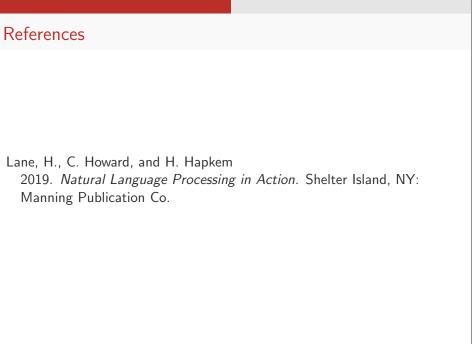
Latent Semantic Analysis Linear discriminant analysis (LDA)

- We are not relying on individual words
- We are gathering up words with similar "semantics"

LDA has learned the spaminess of words and documents

A. Barrón-Cedeño

DIT, LM SpecTra



2024 17 / 20

DIT, LM SpecTra

2024 18 / 20