

91258 / B0385 Natural Language Processing

Lesson 9. Training and Evaluation in Machine Learning

Alberto Barrón-Cedeño a.barron@unibo.it

30/10/2024

	Current Training and Evalua	tion Cycle		
A. Barrón-Cedeño	DIT, LM SpecTra		2024	3 / 29

Table of Contents 1. Current Training and Evaluation Cycle 2. Data Partitioning 3. Imbalanced Data 4. Performance Metrics In part, derived from Appendix D of Lane et al. (2019)

Overfitting

A model that predicts perfectly the training examples

- It lacks capacity to discriminate new data
- In general, it should not be trusted Either the problem is trivial or the model/representations do no generalise)

Generalisation

A model can generalise if it is able to correctly label an example that is outside of the training set (Lane et al., 2019, 447)

There are two big enemies of generalisation:

- Overfitting
- Underfitting

A. Barrón-Cedeño

Underfitting

A model that makes many mistakes, even on the training examples

• It lacks capacity to discriminate new data (as well!)

 In general, it should not be trusted Either the problem is too difficult or the model/representations are not enough

DIT, LM SpecTra

2024 6 / 29

Fitting (Generalising)

A model that, even if it makes some mistakes on the training examples, makes about the same amount of mistakes on the testing examples

- It has the capacity to discriminate (generalise on) new data
- In general, it could be trusted The problem is reasonable and the model/representations are good enough

A. Barrón-Cedeño	DIT. LM SpecTra	2024	9 / 29
		2021	3 / 23

Data Partitioning

So far, we have used all the data available for both training and testing

DIT, LM SpecTra

2024 11 / 29

This is wrong!

Instead, we need to partition it by...

- Held out
- Cross-fit

Always shuffle the data first

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Data Partitioning: held out	
Fixing three data partitions: one specific purpose each Training Instances used to train the model Development Instances to optimise the model Test Instances to test the model	
 while performance on dev < reasonable do adjust configuration train m on the training partition evaluate the performance of m on the dev partition re-train m on train+dev partition evaluate the performance of m on the test partition 	ion ⊳ only once ⊳ only once
A. Barrón-Cedeño DIT, LM SpecTra	2024 12 / 29

Data Partitioning: held out

Adjust configuration

- Adapt representation
- Change learning parameters
- Change learning model

Reasonable performance

- A pre-defined value is achieved (e.g., better than a reasonable baseline)
- The model has stopped improving (convergence)

Evaluate on Test

- Carried out only once, with the best model on development
- Keep the test aside (and don't look at it) during tuning

A. Barrón-Cedeño

DIT, LM SpecTra

2024 13 / 29

Data Partitioning: k-fold cross validation Splitting into k folds which play different roles in different iterations Fold 0 First |C|/k instances Fold 1 Next |C|/k instances Fold k Last |C|/k instances 1: split *C* into *k* partitions 2: performance = $\{\}$ 3: for *i* in [0, 1, ..., k] do training set \leftarrow all partitions, except for *i* 4: validation set \leftarrow partition *i* 5: train on the training set \triangleright same as before 6: perf = evaluate on the validation set 7: performance[i] = perf 8: 9: overall_performace = avg(performance)A. Barrón-Cedeño DIT, LM SpecTra 2024 15 / 29

Data Partitioning: held out
Typical distribution
Mid-size data
training 70%
development 15%
testing 15%
Large data
training 90%
development 5%
testing 5%
Often, the partitions have been predefined by the people behind the data release. In general, if that is the case, stick to that partition

DIT, LM SpecTra

Data Partitioning: k-fold cross validation	
Test data Training data	
Iteration 1 - +	
Iteration 2	
Iteration 3	
Iteration k	
All data	
From https://en.wikipedia.org/wiki/Cross-validation_(statistics)	

A. Barrón-Cedeño

2024 14 / 29

Data Partitioning: k-fold cross validation

Typical evaluation strategies

A. Barrón-Cedeño

- Compute mean and standard deviation over the *k* experiments (sd is important: if it is too high, the model is to volatile, or the partitions are not representative)
- Train a *new* model on all folds, with the best configuration, and test on an extra test set

DIT, LM SpecTra

2024

17 / 29

	Inchalanced Data		
	Impalanced Data		
		2024	10 / 2
A Barron-Ledeno	LILL LIVE Specifica	21124	14 / 5

Data Partitioning: leave-one-out cross validation An extreme case in which k = |C|• Reasonable when the data is relatively small • It might be too expensive A grow-Cede

Dealing with Imbalanced Data

Oversampling Repeating examples from the under-represented class(es)

Undersampling Dropping examples from the over-represented class(es)

Data Augmentation¹ Produce new instances by perturbation of the existing ones or from scratch

Distant Supervision²

Use some labeled training data (on a related task) to label unlabelled data, producing new (noisy) entries

 $^1 {\rm For}$ instance, by means of round-trip translation (Tedesco, 2022) or by active learning (Zhang, 2021)

²As in *proppy* for propaganda identification (Barrón-Cedeño et al., 2019) A. Barrón-Cedeño DIT, LM SpecTra 2024 21 / 29

Performance Metrics True, false, positive, and negative **Confusion matrices** predicted label positive negative false positive positive true positive true negative false negative true negative label A. Barrón-Cedeño DIT, LM SpecTra 2024 23 / 29

Performance Metrics

- If the problem is multi-class, the performance is computed on all the classes and (often) combined
 - Micro-averaged
 - Macro-averaged
- If the problem is sequence tagging (e.g., named-entity recognition), the items are characters or words, not documents
- If the problem is not classification, but regression, we need root mean square error (or mean absolute error)
- If the problem is ${\sim}text$ generation (e.g., machine translation), we need other evaluation schema

References			
Barrón-Cedeño, A., I. Jarada 2019. Proppy: Organizin Information Processing &	t, G. Da San Martino, and P. I the news based on their propa <i>Management</i> , 56(5):1849–186	Nakov agandistic content. 4.	
Lane, H., C. Howard, and H 2019. <i>Natural Language</i> Publication Co.	. Hapkem Processing in Action. Shelter Is	sland, NY: Manning	
Tedesco, N. 2022. <i>Round-Trip Transl.</i> <i>Difficulty of English as a</i> of Interpreting and Trans	ntion: A Method for Estimating Lingua Franca Academic Texts. ation, Università di Bologna, F	r <i>Revision and Editing</i> Master spectra, Depart orlì, Italy.	ment
Zhang, S. 2021. <i>Emotion Identifica</i> Interpreting and Translat	<i>ion in Italian Opera</i> . Master sp on, Università di Bologna, Forlì	pectra, Department of i, Italy.	
A. Barrón-Cedeño	DIT, LM SpecTra	2024	29 / 29