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Previously

• Training and loading (existing) embeddings
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Doc2vec

Objective Computing a vectorial representation for a document

Same idea as with word2vec: a NN to predict words

Input

• k context words (optional)

• A unique ID of the sentence/paragraph/document

Output

• 1 target word

• The paragraph vector is unique among all documents

• The word vectors are shared among all documents

• The document vector is computed on the fly

(Le and Mikolov, 2014); (Lane et al., 2019, p. 215)
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Doc2vec
Distributed Memory Model of Paragraph Vectors (PV-DM)

Derived from CBOW

• Each column in the paragraph matrix is a vector representing one
paragraph

• We can average or concatenate the word and paragraph vectors
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Doc2vec
Distributed Bag of Words version of Paragraph Vector (PV-DBOW)

Similar to skip-gram

• Iteration: a text window and a random word from the text window
are sampled, forming a classification task given the paragraph vector.

• No word vectors: faster + lower memory requirements
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