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Left and right context

Not only the previous context is important to understand the current token

They wanted to pet the dog whose fur was brown.

• Descriptions and relevant information often come later

• A standard RNN neglects information from the future
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Bidirectional recurrent neural network

• We arrange 2 RNNs:
• one takes the input as usual
• the other takes the backward input
• + means concatenation
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Implementation difference

# Adding one bidirectional recurrent layer

model.add(Bidirectional(SimpleRNN(

num_neurons ,

return_sequences=True),

input_shape=(maxlen , embedding_dims))

)

� Let us see
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BiRNN zoom into results

Accuracies after 2 epochs

units Acc Accval
50 0.8156 0.7662
40 0.8244 0.7540
30 0.8259 0.7874
20 0.8072 0.8076
10 0.8007 0.8016
5 0.7973 0.8006
1 0.7070 0.7822

* remember we had used 50 units last time for the RNN
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LSTMs
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Short effect from the past

The effect of token xt dilutes significantly as soon as in t + 2

Consider the following —fairly plausible— texts. . .

The young woman went to the movies with her friends.

The young woman, having found a free ticket on the ground, went to the
movies.

• In both cases, went is the main verb

• A (Bi)RNN would hardly reflect that in the second case

• We need an architecture able to “remember” the entire input
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State: the memory of an LSTM

• The memory state contains attributes

• The attributes are updated with every
instance

• The rules of the state are trained NNs

Now we have two learning objectives:
• Learn to predict the target labels
• Learn to identify what has to be remembered

(Lane et al., 2019, p. 276)
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Unrolled LSTM

• Activation from t − 1 plus memory state
• The memory state sends a vector with the state of each LSTM cell,

of cardinality number of units

(Lane et al., 2019, p. 277)
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The LSTM cell (layer)

Input: outputt−1 + inputt

Gates: a FF layer + an activation function each
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LSTM Forget Gate

Input: [x[t,0], x[t,1], . . . , x[t,299], h[t−1,0], h[t−1,1], . . . h[t−1,49], 1]

Forget: How much of the memory should be erased —forgetting
long-term dependencies as new ones arise
351 ∗ 50 = 17, 550 parameters
Feed-forward NN with sigmoid activation function: [0, 1]

(Lane et al., 2019, p. 280)
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LSTM Forget Gate

Forget is a mask:

(Lane et al., 2019, p. 282)
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LSTM Candidate Gate

Input: [x[t,0], x[t,1], . . . , x[t,299], h[t−1,0], h[t−1,1], . . . h[t−1,49], 1]

Candidate: How much to augment the memory —what to remember
and where to do it
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LSTM Candidate Gate

Candidate choice
Which values should be
updated (∼forget)

Candidate values
Computes those new
values

(Lane et al., 2019, p. 283)
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LSTM Output Gate

Input: [x[t,0], x[t,1], . . . , x[t,299], h[t−1,0], h[t−1,1], . . . h[t−1,49], 1]

Output: produces the output vector —both for the actual task and
back to the memory

• sigmoid to the input
• tanh to the state
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LSTM Output Gate

* The figure says “added”. It is a product

(Lane et al., 2019, p. 284)
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LSTM: Wrapping Up

• The main network uses the output of the memory in the same fashion
as in a RNN

• The memory decides what to keep/feed to the network

• The weights of the memory are also learned by back-propagation

� Let us see
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LSTM: Result

arch units Acc Accval
BiRNN 50 0.8156 0.7662
BiRNN 40 0.8244 0.7540
BiRNN 30 0.8259 0.7874
BiRNN 20 0.8072 0.8076
BiRNN 10 0.8007 0.8016
BiRNN 5 0.7973 0.8006
BiRNN 1 0.7070 0.7822
LSTM 50 0.8692 0.8678
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