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Previously

• Pre-processing

• BoW representation

• One rule-based sentiment model

• One statistical model (Näıve Bayes)

• tf -idf (+ Zipf’s law)
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Topic Vectors
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Topic Vectors
What for?

“[. . . ] using the correlation of normalized frequencies with each other to
group words together in topics to define the dimensions of new topic
vectors.” (Lane et al., 2019, p. 98)

What can we achieve with this?

• Compare texts on the basis of meaning (not keywords)

• Search based on meaning

• Represent the subject of a statement/document or corpus

• Extract keywords
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Topic Vectors
Limitation of word vectors

d1 Una macchina rossa
d2 Le macchine blu

↓
stopwording + stemming
↓

d ′
1 macchin ross

d ′
2 macchin blu

↓
vectorisation
↓

d⃗1 [1, 1, 0]

d⃗2 [1, 0, 1]

cos(d⃗1, d⃗2) > 0
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Topic Vectors
Limitation of word vectors

d1 Una vettura rossa
d2 Le macchine blu

↓
d ′
1 vettur ross

d ′
2 macchinn blu

↓
d⃗1 [1, 1, 0, 0]

d⃗2 [0, 0, 1, 1]

cos(d⃗1, d⃗2) = 0

A. Barrón-Cedeño DIT, LM SpecTra 2025 7 / 20

Topic Vectors

• We need to infer what w ∈ d means

• Indeed, we need to infer what {wk ,wk+1, . . .} ∈ d mean

• We need a different kind of vector

Word-topic vector One vector represents one word

Document-topic vector One vector represents one document (by
combining its word-topic vectors)

These models can deal with polysemy (e.g., homonyms) at some extent
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Common-Sense Topic Modeling

Scenario

• We are processing sentences about pets, Central Park, and New York

• Three topics: petness, animalness, cityness

• cat and dog should contribute similarly to petness

• NYC should contribute negatively to animalness

• apple should contribute mildly to cityness

score
topic high medium low

Petness cat, dog NYC, apple
Cityness NYC apple cat, dog

� Let us see

Example from (Lane et al., 2019, p. 101–102)
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Common-Sense Topic Modeling

We have a 3× 6 matrix: 3 topic vectors

cat dog apple lion NYC love

petness [ 0.3 0.3 0.0 0.0 -0.2 0.2 ]
animalness [ 0.1 0.1 -0.1 0.5 0.1 -0.1 ]
cityness [ 0.0 -0.1 0.2 -0.1 0.5 0.1 ]

The relationships between words and topics can be “flipped”: transposing
the 3× 6 matrix to produce topic weights for each word

petness animalness cityness

cat [ 0.3 0.1 0.0 ]
dog [ 0.3 0.1 -0.1 ]
apple [ 0.0 -0.1 0.2 ]
lion [ 0.0 0.5 -0.1 ]
NYC [ -0.2 0.1 0.5 ]
love [ 0.2 -0.1 0.1 ]
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Common-Sense Topic Modeling

Given:

• A new 6D tf -idf vector
• Our 3× 6D matrix

Multiply: 6D vector × [3× 6]D matrix

→ 3D document vector

� Let us see

Advantages

• We can visualise 3D vectors

• A 3D vector space is convenient for classification: it can be sliced
with a hyperplane to divide it into classes
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Common-Sense Topic Modeling

Borrowed from (Lane et al., 2019, p. 104)
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Common-Sense Topic Modeling

In summary. . .

d⃗ is a tf -idf vector of size |V |
M is a 3× V weight matrix

↓
d⃗t becomes a topic vector of size 3

From one vector space to another
high-dimensional tf -idf space → low-dimensional topic vector space

How can we learn the “transformation” matrix?
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Towards a Topic Space

You shall know a word by the company it keeps
J. R. Firth (1957)

• We have corpora

• We have pre-processors

• We can produce tf -idf matrices

We can count co-occurrences → the company of a word
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Latent Semantic Analysis
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Latent Semantic Analysis

• An algorithm to gather words (tf -idf matrix) into topics

• It (somehow) captures the meaning of words

• It is a dimension reduction technique (sparse → dense vectors)

AKA

• Principal Component Analysis (PCA)

• Latent Semantic Indexing (LSI, in IR)
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Latent Semantic Analysis
Linear discriminant analysis (LDA)

A supervised algorithm (it requires labeled data)

Algorithm

1. Compute the centroid of the vectors in a class

2. Compute the centroid of the vectors not in that class

3. Compute the vector difference between the centroids

Centroid: average in a vector space

Basic algebra!

� Let us see
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Latent Semantic Analysis
Linear discriminant analysis (LDA)

• We are not relying on individual words

• We are gathering up words with similar “semantics”

LDA has learned the spaminess of words and documents
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Coming Next

• Training and Evaluation in Machine Learning

• More LSA (from 4.2, p 111)
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