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Previously

® Pre-processing

BoW representation
® One rule-based sentiment model

¢ One statistical model (Naive Bayes)

e tf-idf (4 Zipf's law)
Topic Vectors



http://www.dit.unibo.it

Topic Vectors
What for?

Extract keywords
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® Search based on meaning

What can we achieve with this?

e Compare texts on the basis of meaning (not keywords)

® Represent the subject of a statement/document or corpus

“[...] using the correlation of normalized frequencies with each other to
group words together in topics to define the dimensions of new topic
vectors.” (Lane et al., 2019, p. 98)

Topic Vectors

Limitation of word vectors
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d1  Una vettura rossa
d> Le macchine blu
A
di  vettur ross
d5  macchinn blu
R
di [1,1,0,0]
d» [0,0,1,1]
cos(dy, db) =0
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Topic Vectors

Limitation of word vectors

di
d>

dp

A. Barrén-Cedefio

Una macchina rossa
Le macchine blu

I

stopwording 4+ stemming

1

macchin ross
macchin blu

1

vectorisation

1
[1,1,0]
[1,0.1]
cos(dy, db) >0
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Topic Vectors
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® \We need to infer what w € d means
® Indeed, we need to infer what {wy, wxi1,...} € d mean

e We need a different kind of vector

One vector represents one word

One vector represents one document (by
combining its word-topic vectors)

These models can deal with polysemy (e.g., homonyms) at some extent
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Common-Sense Topic Modeling

Scenario

® Three topics: petness, animalness, cityness

® cat and dog should contribute similarly to petness

NYC should contribute negatively to animalness

® apple should contribute mildly to cityness

score
topic high medium  low
Petness | cat, dog NYC, apple
Cityness | NYC apple cat, dog

& Let us see

Example from (Lane et al., 2019, p. 101-102)
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® \We are processing sentences about pets, Central Park, and New York
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Common-Sense Topic Modeling

Given:

® A new 6D tf-idf vector
® Qur 3 x 6D matrix

Multiply: 6D vector x [3 x 6]D matrix
— 3D document vector
& Let us see

Advantages
® \We can visualise 3D vectors

with a hyperplane to divide it into classes
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® A 3D vector space is convenient for classification: it can be sliced
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Common-Sense Topic Modeling

We have a 3 x 6 matrix: 3 topic vectors

‘ cat dog apple lion NYC love
petness [ 03 03 00 00 -02 02 ]
animalness [ [ 0.1 0.1 -01 05 01 -01 |
cityness [ 0.0 -0.1 02 -01 05 01 |

The relationships between words and topics can be “flipped”: transposing
the 3 x 6 matrix to produce topic weights for each word

petness animalness cityness
cat [ 0.3 0.1 00 ]
dog [ 0.3 0.1 -0.1 ]
apple | [ 0.0 -0.1 02 ]
lion | [ 0.0 0.5 -0.1 ]
NYC | | -0.2 0.1 0.5 ]
love [ 0.2 -0.1 0.1 ]
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Common-Sense Topic Modeling

| V= “animalness”
lion
ST [0, .5, —A]
dog
[3,.1,-1]
T cat
[3,.1,0]
NYC
-2, 1, .5] i -
/ 3\ 3 X = “petness’
love
apple [0,-1,.2]
z = “cityness” [0,-.1,.2]

Borrowed from (Lane et al., 2019, p. 104)
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Common-Sense Topic Modeling

In summary. ..
is a tf-idf vector of size |V/|

is a 3 x V weight matrix
1

becomes a topic vector of size 3

From one vector space to another
high-dimensional tf-idf space — low-dimensional topic vector space

How can we learn the “transformation” matrix?
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Latent Semantic Analysis
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Towards a Topic Space

You shall know a word by the company it keeps
J. R. Firth (1957)

® We have corpora
® \We have pre-processors

® We can produce tf-idf matrices

We can count co-occurrences — the company of a word
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Latent Semantic Analysis

e |t (somehow) captures the meaning of words

AKA
® Principal Component Analysis (PCA)
¢ Latent Semantic Indexing (LSI, in IR)
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® An algorithm to gather words (tf-idf matrix) into topics
e |t is a dimension reduction technique (sparse — dense vectors)
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Latent Semantic Analysis Latent Semantic Analysis

Linear discriminant analysis (LDA) Linear discriminant analysis (LDA)

A supervised algorithm (it requires labeled data)

Algorithm

® We are not relying on individual words
1. Compute the centroid of the vectors in a class

2. Compute the centroid of the vectors not in that class
3. Compute the vector difference between the centroids

® \We are gathering up words with similar “semantics”

LDA has learned the spaminess of words and documents

average in a vector space
Basic algebra!

& Let us see
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Coming Next References
® Training and Evaluation in Machine Learning Lane, H., C. Howard, and H. Hapkem
e More LSA (from 42, p 111) 2019. Natural Language Processing in Action. Shelter Island, NY: Manning

Publication Co.
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