

91258 / B0385 Natural Language Processing

Lesson 12. word2vec

Alberto Barrón-Cedeño a.barron@unibo.it

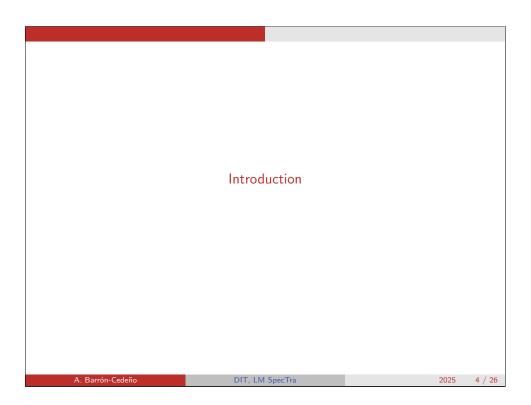
05/11/2025

Table of Contents

- 1. Introduction
- 2. Word Vectors
- 3. Computing word2vec representations

Chapter 6 of Lane et al. (2019)

Previously
Introduction to neural networks
First Keras neural network
Considerations when building/training a network



Introduction

Previously

BoW Each token represents one dimension

TF-IDF Document- and corpus-level statistics

LSA Dimensional reduction for a dense representation¹

Drawbacks

- They ignore the (nearby) context of a word
- They ignore the overall meaning of a statement

¹Quite superficially

A. Barrón-Cedeño DIT, LM SpecTra

Word Vectors

Introduction

Word vectors. Numerical vector representations of word semantics, or meaning, including literal and implied meaning (Lane et al., 2019, p. 182)

Math with words

q = "She was a key physics figure in Europe in the early 20th century"

Even better:

A. Barrón-Cedeño

DIT, LM SpecTra

2025 6 / 26

Word Vectors

Intuition

Word2vec (Mikolov et al., 2013)

- It learns the *meaning* of words by processing a large corpus²
- The corpus is not labeled
 → unsupervised*

Can we train a NN to predict word occurrences near a target word w?

We do not care about the prediction (that would be handy, but it is not important here). We care about the resulting internal representation

A. Barrón-Cedeño

DIT, LM SpecTra

2025 8 / 26

²For instance, 100B words from the Google News Groups

Word Vectors

Vector Algebra (again)

- word2vec transforms token-occurrence vectors into lower-dimensional vectors
- The dimension is usually in the 100s (e.g., 100, 200, 300)

Typical process

Input: Text Output: Text

- 1. Compute vectors
- 2. Do algebra
- 3. Map back to text

Word Vectors

Some "typical" operations/properties

Gender $king + woman - man \rightarrow queen$

 $\vec{x}_{coffee} - \vec{x}_{coffees} \approx \vec{x}_{cup} - \vec{x}_{cups} \approx \vec{x}_{cookie} - \vec{x}_{cookies}$ PI/Sg

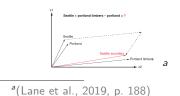
Locations San Francisco — California + Colorado \rightarrow Denver

Culture tortellini — Bologna + Valencia \rightarrow paella ?

Word Vectors

Vector Algebra (again)

Portland Timbers + Seattle − Portland =? ourput_vector = wv['Seattle'] + wv['Portland Timbers'] - wv['Portland']



Word2vec "knows" that

- $dist(Portland, Portland Timbers) \approx dist(Seattle, Seattle Sounders)$
- The diffs between the pairs of vectors are roughly in the same direction

Computing word2vec representations

The grand canal of Venice (Claude Monet, 1908)

Alternatives to Build word2vec Representations

skip-gram

Input one (target) word Output context words

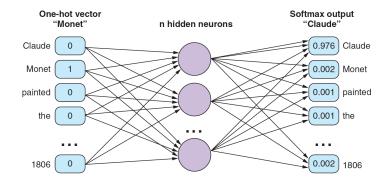
CBOW (continuous bag-of-words)

Input context words Output one target word

Skip-Gram

Neural Network Structure

A. Barrón-Cedeño



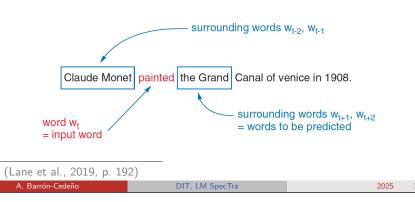
- *n* is the number of vector dimensions in the model
- M is the number of input/output neurons; M = |vocabulary|
- The output activation function is a softmax Typical in multi-class problems; $\sum_{M} = 1.0$

Skip-Gram

Definition Skip-grams are *n*-grams that contain gaps (skips over intervening tokens)

Input: one word

Output: context words



Skip-Gram

Learning the Representations (1/3)

- Window size: 2 words → 5-grams
- Input: the token at time t: w_t
- Output: all context tokens on the left and right, one at a time

 $s = w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_{10}$

$$[\ldots] w_{t-2} w_{t-1} w_t w_{t+1} w_{t+2} [\ldots]$$

A. Barrón-Cedeño

Skip-Gram

Learning the Representations (2/3)

Example: "Claude Monet painted the Grand Canal of Venice in 1908."

input		expected	doutput	
W_t	W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}
Claude			Monet	painted
Monet		Claude	painted	the
painted	Claude	Monet	the	Grand
the	Monet	painted	Grand	Canal
Grand	painted	the	Canal	of
Canal	the	Grand	of	Venice
of	Grand	Canal	Venice	in
Venice	Canal	of	in	1908
in	of	Venice	1908	
1908	Venice	in		
al., 2019, p.	194)			

Skip-Gram

(Lane et

Outcome

- The output layer can be *ignored*²
- Semantically similar words end up with similar vectors —they were trained to predict similar contexts
- The weights from input to hidden layer are used to compute embeddings

$$wv_w = dot(one\ hot_w, W)$$

A. Barrón-Cedeño DIT, LM SpecTra 2025 19 / 26

Skip-Gram

Learning the Representations (3/3)

Training

- Both input and output are a one-hot vector
- n-1 iterations when using n-grams:

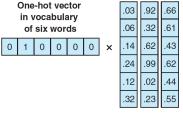
$$[\ldots] w_{t-2} w_{t-1} w_t w_{t+1} w_{t+2} [\ldots]$$

i	input	output	i	input	output	i	input	output
0	W_t	W_{t-2}	4	w_{t+1}	w_{t-1}	8	W_{t+2}	W_t
1	W_t	w_{t-1}	5	w_{t+1}	W_t	9	W_{t+2}	w_{t+1}
2	W_t	w_{t+1}	6	w_{t+1}	W_{t+2}	10	W_{t+2}	W_{t+3}
3	w_t	W_{t+2}	7	w_{t+1}	W_{t+3}	11	W_{t+2}	W_{t+4}

• To simplify the loss calculation, the softmax is converted to one-hot

Skip-Gram

Embedding Computation



Three neuron weight matrix

The dot product calculation

$$\begin{array}{c} (0^{*}.03) + (1^{*}.06) + (0^{*}.14) + (0^{*}.24) + (0^{*}.12) + (0.^{*}.32) \\ \hline \\ (0^{*}.92) + (1^{*}.32) + (0^{*}.62) + (0^{*}.99) + (0^{*}.02) + (0.^{*}.23) \\ \hline \\ (0^{*}.66) + (1^{*}.61) + (0^{*}.43) + (0^{*}.62) + (0^{*}.44) + (0.^{*}.55) \\ \end{array}$$

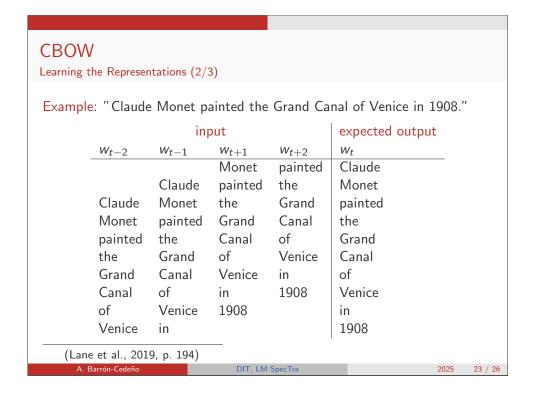
20 / 26

Resulting 3-D word vector

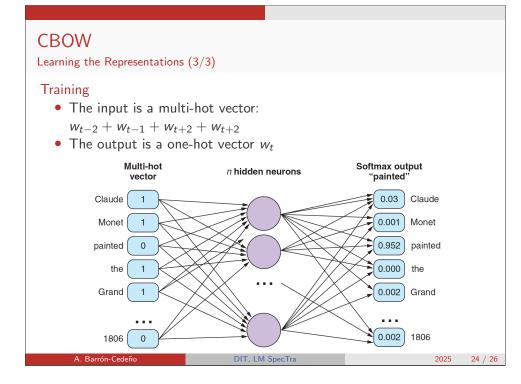
A. Barrón-Cedeño DIT, LM SpecTra

²Tweaking this procedure could result in a language model

Definition Continuous bag-of-words Input: context words Output: target (centre) word Surrounding words w_{t-2}, w_{t-1} Claude Monet painted the Grand Canal of Venice in 1908. surrounding words w_{t+1}, w_{t+2} = input words (Lane et al., 2019, p. 196) A. Barón-Cedeño DIT, LM SpecTra 2025 21 / 26



CBOW Learning the Representations (1/3) Window size: $2 \text{ words} \rightarrow 5\text{-grams}$ Input: multi-hot vector (sum of all context one-hot vectors) Output: one-hot vector $s = w_1 \ w_2 \ w_3 \ w_4 \ w_5 \ w_6 \ w_7 \ w_8 \ w_9 \ w_{10}$ [...] $\underline{w_{t-2} \ w_{t-1}} \ w_t \ \underline{w_{t+1} \ w_{t+2}} \ [...]$



Final Remarks

Skip-gram

- Works well with small corpora
- High-frequency [2, 3]-grams can be added as single terms (e.g., New_York, Atlanta_Braves)
- ullet High-frequency tokens are subsampled (\sim to IDF over stopwords)
- Negative sampling. Not all weights are updated given a pair, just a few negative samples (much cheaper; roughly the same result)

CBOW

• Higher accuracy for frequent words Much faster to train

Lane, H., C. Howard, and H. Hapkem 2019. Natural Language Processing in Action. Shelter Island, NY: Manning Publication Co. Mikolov, T., K. Chen, G. Corrado, and J. Dean 2013. Efficient estimation of word representations in vector space. In Arxiv.