

91258 / B0385 Natural Language Processing

Lesson 19. LSTM: characters and generation

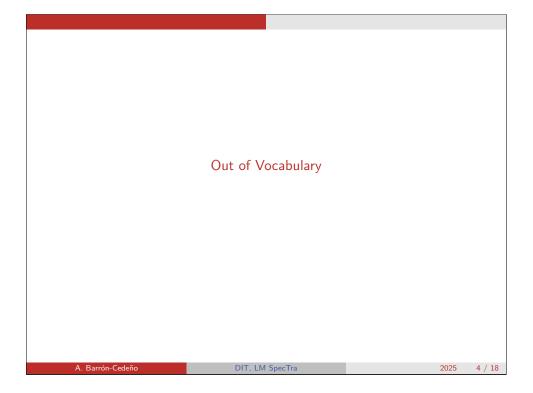

Alberto Barrón-Cedeño a.barron@unibo.it

Table of Contents

- 1. Out of Vocabulary
- 2. Characters
- 3. Text generation

Chapter 9 of Lane et al. (2019)

Convolutional neural networks
Recurrent neural networks
Bidirectional Recurrent neural networks
Long short-term memory networks

The curse of OOV

Out-of-vocabularies cause big trouble

The Mexico City Metro, operated by the Sistema de Transporte Colectivo, is the second largest metro system in North America after the New York City Subway.

The Mexico_City Metro, operated by the \cdot de \cdot , is the second largest metro system in North America after the New_York City Subway.

Alternatives

- Replace the unknown with a random word, from the embedding space
- Replace the unknown word wit UNK, and produce a random vector
- Turn into characters

https://en.wikipedia.org/wiki/Mexico_City_Metro (2021)

A. Barrón-Cedeño

DIT, LM SpecTra

2025 5 / 18

Into Characters

Words are just a sequence of characters

By modeling the representations at the character level...

- We end up with a small closed vocabulary
- We get rid of OOVs
- We can learn patterns at a lower level
- We reduce the variety of input vectors drastically

Let us see

Characters

A. Barrón-Cedeño

OII, LM SpecIra

2025 6 / 1

Into Characters: outcome

• The training takes close to 4 minutes (the original implementation from the book takes more than 30)¹

epoch	seconds	acc	acc _{val}
1	24	0.5365	0.5785
2	21	0.6468	0.5827
3	41	0.6859	0.5763
4	21	0.7262	0.5739
5	20	0.7539	0.5731
6	21	0.7766	0.5666
7	19	0.8008	0.5700
8	20	0.8135	0.5719
9	19	0.8342	0.5799
10	21	0.8459	0.5843

¹Using Google's colab2.5GHz Quad-Core Intel Core i7 with 16GB of RAM

A Barrón-Cedeño

DIT, LM SpecTra

2025 8 /

A. Barrón-Cedeño DIT, LM SpecTra 2025 7

Into Characters: outcome

- \bullet The training accuracy is "promising": ~ 84.40
- The validation accuracy is terrible: \sim 58.40
- Overfitting

Reasons/Solutions

- The model might be *memorising* the dataset
- Increase the dropout (try!)
- Add more labeled data (hard!)

A character-level model shines at its best when modeling/generating language

A. Barrón-Cedeño

DIT, LM SpecTra

2025 0 / 19

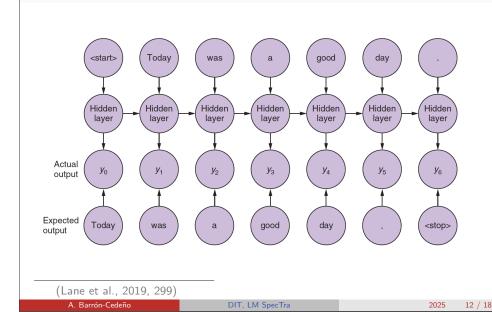
IT. LM SpecTra

Text generation

5 10 / 18

Predicting the next word

• An LSTM can learn


$$p(w_t \mid w_{t-1}, w_{t-2}, \dots, w_{t-n}) \tag{1}$$

- It can do so with a memory (full context)
- It can do so at the character level

From classification to generation

- Now we want to predict the next word (\sim word2vec?)
- We want to learn a *general* representation of language

Unrolling the next-word prediction (word 2-grams)

(Lane et al., 2019, 299)

Predict after having looked at a sequence T o d a y y y ... Hidden Hidden layer Hidden layer layer layer Actual output yo ... Actual output (a period, in this case) (Lane et al., 2019, 300) A. Barrón-Cedeño DIT, LM SpecTra 2025 15 / 18

Generation example

Since we are interested in *style* and in creating a consistent model, we wont use IMDB (multi-authored and small).

Let us try to mimic William Shakespeare

■ Let us see

A. Barrón-Cedeño DIT, LM SpecTra 2025 16

Adding Extra Stuff

- Expand the quantity and quality of the corpus
- Expand the complexity of the model (units/layers/LSTMs)
- Better pre-processing:
 - Better case folding
 - Break into sentences
- Post-processing
 - Add filters on grammar, spelling, and tone
 - Generate many more examples than actually shown to users
- Select better seeds (e.g., context, topic)

Most of these strategies apply to any problem you can think about!

(Lane et al., 2019, 307)

A. Barrón-Cedeño DIT, LM Sp

2025 17 / 18

Lane, H., C. Howard, and H. Hapkem 2019. Natural Language Processing in Action. Shelter Island, NY: Manning Publication Co.