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http://www.dit.unibo.it

I
The curse of OOV

Out-of-vocabularies cause big trouble
|
The Mexico City Metro, operated by the Sistema de Transporte Colectivo,
is the second largest metro system in North America after the New York

City Subway.

|
The Mexico_City Metro, operated by the - de - -, is the second largest
metro system in North America after the New_York City Subway.

Alternatives
® Replace the unknown with a random word, from the embedding space
® Replace the unknown word wit UNK, and produce a random vector
® Turn into characters

https://en.wikipedia.org/wiki/Mexico_City_Metro (2021)

Into Characters

Words are just a sequence of characters

By modeling the representations at the character level. ..
® We end up with a small closed vocabulary
e We get rid of OOVs
® We can learn patterns at a lower level
® \We reduce the variety of input vectors drastically
& et us see
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Characters
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Into Characters: outcome
® The training takes close to 4 minutes (the original implementation
from the book takes more than 30)!
epoch seconds acc acc,,
1 24 0.5365 0.5785
2 21 0.6468 0.5827
3 41 0.6859 0.5763
4 21 0.7262 0.5739
5 20 0.7539 0.5731
6 21 0.7766 0.5666
7 19 0.8008 0.5700
8 20 0.8135 0.5719
9 19 0.8342 0.5799
10 21 0.8459 0.5843
1Using Google's colab2.5GHz Quad-Core Intel Core i7 with 16GB of RAM
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https://en.wikipedia.org/wiki/Mexico_City_Metro

Into Characters: outcome

® The training accuracy is “promising”: ~ 84.40
® The validation accuracy is terrible: ~ 58.40
e Qverfitting

Reasons/Solutions
® The model might be memorising the dataset
® Increase the dropout (try!)
® Add more labeled data (hard!)

A character-level model shines at its best when modeling/generating
language
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Predicting the next word

® An LSTM can learn
p(we | We—1, We_2,...,We_p) (1)

® |t can do so with a memory (full context)

® |t can do so at the character level

From classification to generation
¢ Now we want to predict the next word (~ word2vec?)

® \We want to learn a general representation of language
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Text generation
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Unrolling the next-word prediction (word 2-grams)

Expected
output

(Lane et al., 2019, 299)
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Unrolling the next-wordcharacter prediction

Actual
output

Expected
output

Expected output is the next token in the sample. Shown here on character level.

® Now the error is computed for every single output
® We still back-propagate only after passing a full instance
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Just predict the next character, given a‘ﬂ.q uence of characters.

Actual output

Expected output
(a period, in this case)

(Lane et al., 2019, 300)
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New target labels

New output: a one-hot encoding (again) of the next character

Actual
output

Expected
output

Expected output is the next token in the sample. Shown here on character level.

(Lane et al., 2019, 299)
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Generation example

Since we are interested in style and in creating a consistent model, we
wont use IMDB (multi-authored and small).

Let us try to mimic William Shakespeare

& Let us see
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Adding Extra Stuff

Expand the quantity and quality of the corpus

Expand the complexity of the model (units/layers/LSTMs)
Better pre-processing:

Better case folding
Break into sentences

® Post-processing

Add filters on grammar, spelling, and tone
Generate many more examples than actually shown to users

® Select better seeds (e.g., context, topic)

Most of these strategies apply to any problem you can think about!

(Lane et al., 2019, 307)
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