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Abstract: As universities transition from static FAQ platforms to interactive conversational systems, intent
classification of student queries emerges as a key challenge for effective human-machine communication. This
paper explores how different modelling strategies perform in mapping queries to a structured set of seven
intent categories, with a particular focus on the impact of synthetic augmentation. The models are trained on a
newly created University FAQ dataset of manually collected questions, expanded with GPT-based
augmentation. A classical baseline (TF-IDF + Linear SVM) is compared with neural architectures (BiLSTM
and TextCNN), under both manual and augmented training regimes. Results show that augmentation
consistently improves F1 and accuracy (+0.02 - 0.04) across all models. More complex architectures perform
better but gain less from augmentation. Error analyses, comparative visualizations and an interactive demo
offer practical insights. The study provides a robust foundation for building precise and adaptable intent
classifiers in educational domains.
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1. Introduction and Background

For university students, questioning is not only a
path to knowledge but also a necessity of daily life.
From admission and academic processes to
housing, visas, and mobility information,
international students face constant uncertainties
and require real-time support. Universities have
traditionally provided guidance by relying on
digital helpdesks and FAQ web pages, but these
systems are inherently limited and static: they force
students to adapt their queries to rigid categories or
submit request forms for later human follow-up.

To enable progress, many institutions are now
experimenting with chatbots and virtual assistants,
which can reduce staff workload and provide
immediate, personalized assistance (Okonkwo &
Abejide, 2021). However, the quality of these
interactions depends critically on a system’s ability
to correctly recognize both explicit and implicit
user intentions. While conversation feels effortless
to humans because it is instinctive and deeply
rooted in our evolution, its contextual richness and
variability make it hard to codify for machines.
Moreover, student queries can be phrased in
countless ways and span a wide range of topics.
Addressing these challenges is precisely the role of
intent classification, a core task in natural language

processing that maps unstructured questions to
structured categories of meaning, identifying the
underlying purpose behind a query. Accurate intent
classification drives intelligent chatbots and
conversational agents, enabling the transition from
static platforms to more dynamic and interactive
dialogue solutions (Pereira et al., 2023).

Two key factors drive this study. First, there is a
scarcity of well-curated datasets and transparent
pipelines that connect domain-specific data to
clearly specified models, limiting systematic
progress in educational NLP (Peyton et al., 2025;
Pereira et al., 2023). Second, building large labeled
datasets requires intensive manual effort, whereas
artificial data generated by LLMs may offer a
promising way to expand resources. Recent
research suggests that GPT-based augmentation
can indeed enrich models’ training, though effects
vary across contexts: while it has been shown to
boost performance on intent classification tasks
(Sahu et al., 2022; Madruefo et al., 2025), its
benefits depend on intent clarity and often require
human-in-the-loop validation. Similarly, structured
augmentation pipelines have been found to
systematically improve accuracy on educational
datasets (Neshaei et al., 2025; Robson et al., 2021).



The goals are here both empirical and practical: to
establish a clean and reproducible baseline for
intent classification in the university FAQ domain,
grounded in a well-documented dataset and
experimental protocol; and to quantify the
contribution of synthetic data on classification
performance, analysing whether greater linguistic
variability =~ helps  model  generalization'.
Accordingly, the work is structured around two
research questions:

=  RQI1 (Modelling): How do a strong classical
baseline (linear SVM with TF-IDF) and
lightweight neural models (BiLSTM and
TextCNN  with pretrained embeddings)
compare on university FAQ intent
classification?

= RQ2 (Augmentation): Does adding
automatically generated questions to the
training set help models perform better, or does
it introduce noise that obscures intents?

The dataset consists of 3500 university-related
questions, which were manually collected,
annotated across seven intents, and later expanded
with GPT-generated examples to a total of 5040
queries. While prior studies have demonstrated that
even small datasets and simple classifiers can
achieve strong results (Assayed et al., 2022), and
that classical models often remain competitive
baselines (Al-Tuama & Nasrawi, 2022), this
project aims to systematically evaluate both
classical and neural approaches on educational
intent recognition. At the same time, the focus
relies on comparing the two training regimes:
manual-only vs. manual + synthetic.

The methodology section details the full
experimental pipeline, while the results examine
performance metrics across models and intents,
with particular attention to where augmentation
proves most beneficial. These findings are
complemented by error analyses and comparative
visualizations that offer deeper insights. Finally, an
interactive demo illustrates the practical potential
and usability of the models for real-world student
queries. The paper concludes by discussing
implications and future research.

2. Dataset and Project Foundations

The study builds on the first stage of the project,
which focused on building and annotating a high-

! Generalization in the field of natural language processing
(NLP) is the ability of models to efficiently make predictions

quality English-language dataset for university
FAQ intent classification (Fig. 1). Motivated by the
scarcity of structured and machine-readable
resources for intent classification in academic
contexts (Peyton et al., 2025; Okonkwo & Abejide,
2021), real or realistic student questions were
collected from institutional websites worldwide.
Using the BootCaT toolkit and a custom Python
extraction script, the queries were automatically
gathered and then manually reviewed to remove
duplicates and out-of-domain entries, resulting in
2179 valid examples. To further enrich the dataset
and capture greater diversity, 1321 additional
questions were manually sourced from various
university platforms and international FAQ pages.
This combined effort led to the production of a
manual dataset of 3500 questions, all related to the
university ecosystem and student support.

A seven-intent taxonomy was meticulously
developed to capture the most frequent student
needs (Academic & Administrative;
Accommodation & Housing; Admission &
Application; Fees & Financial; Mobility &
Exchange; Student Services & General Info; Visa
& Legal Requirements). Annotation was carried
out in INCEpTION under prescriptive guidelines,
assigning a single intent label to each question. To
ensure reliability, 20% of data was double-
annotated, achieving almost perfect inter-annotator
agreement (x = 0.91). The finalized annotations
were then exported and processed through a
dedicated Python script to generate a clean and
model-ready .xlsx file.

To increase linguistic variety and enable evaluation
of synthetic augmentation, the dataset was further
expanded with 1540 GPT-generated questions. A
custom GPT assistant was created and trained with
specific instructions to generate balanced sets of
220 queries per intent category. All outputs were
then manually checked, and intent labels were
corrected whenever the automatic intent
assignment was incorrect. The resulting final
corpus contains 5040 questions, structured in a
clear and reproducible way, suitable for inspection
and ready for subsequent model training. The
present paper takes the next step: evaluating
different modelling strategies and quantifying the
impact of GPT-based augmentation on intent
classification.

on previously unseen data based on what it has learned from
the training data.
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Fig. 1 — Dataset Creation and Augmentation
Pipeline

3. Methodology and Experimental Setup

This section outlines the pipeline for training and
evaluating intent classifiers on university-related
queries, summarizing the code script® and covering
preprocessing,  data  partitioning,  feature
representations, model architectures, training
procedures and evaluation metrics. All choices aim
at reproducibility, realistic evaluation, maximizing
performance, and practicality for student-support
deployment.

Intent classification is framed as a single-label
classification task, with all experiments operating
at the question (single-sentence) level. The
objective is to automatically map each question to
one of the 7 predefined intent categories covering
key student-facing domains. Models are trained
and compared under two training regimes designed
to test the effect of synthetic augmentation:

*  Manual: models are trained only on human-
collected and annotated questions.

=  Augmented: models are trained on the union
of manual and GPT-generated questions.

2 Portions of the code were developed with the support of
ChatGPT (OpenAl), used strictly as an assistant to suggest
possible solutions or approaches. All generated content was

Throughout the code and this paper, when a model
is labeled “manual” or “augmented”, this refers
only to the training set composition.

3.1 General Data Preparation

Preprocessing: After uploading the dataset, the
two data sources, manual and augmented, are
loaded into separate data frames and checked for
consistency in shape and scheme. Light text
cleaning is applied, limited to whitespace trimming
and lowercasing, while no  stemming,
lemmatization, or stopword removal is performed.
This minimal normalization is intentionally
adopted to preserve the natural linguistic variety of
student queries and avoid removing semantic cues
that could carry informative patterns or be decisive
to detect intents.

Partitioning: Data splitting is performed only on
the manual dataset, using stratification by intent to
maintain label proportions. An 80/10/10 partition is
chosen to maximize the amount of data available
for training, given the relatively limited dataset
size. A fixed random seed (42) ensures
reproducibility. The GPT-based augmentation data
is shuffled to avoid unwanted ordering patterns. It
is then merged with the manual training set to form
the augmented training regime, which is also re-
shuffled to avoid ordering effects. The resulting
splits maintain balanced intent proportions, with
light imbalances being moderated after the addition
of synthetic queries. In both training regimes,
validation and test sets remain strictly manual-
only. This design choice prevents synthetic
paraphrases from leaking into evaluation, ensuring
that test scores reflect real-world performance on
genuine, human-written student queries. It also
mirrors real deployment, where the system will
encounter natural queries rather than synthetic
ones.

Label Encoding: A single LabelEncoder from the
Scikit-learn library is fitted on the intent labels
found in the manual dataset. The encoder converts
text-based intents into numeric IDs, producing a
consistent mapping (label string = integer ID) that
ensures reproducibility throughout the pipeline.
This guarantees that the same intent is always
assigned the same index across all experiments,
training regimes and model comparisons.

carefully reviewed and validated by the author, ensuring
responsible and transparent use of Al tools.



3.2 Text representations

Two types of text representations are used, each
tailored to the corresponding model family.

For the classical pipeline using SVM, queries are
vectorized with TF-IDF, capturing both unigrams
and bigrams (ngram range=(1,2)), with a
minimum document frequency (min_df=2) to drop
very rare terms. Since each training regime has a
different data distribution and uses features learned
from its own training data, separate vectorizers are
fitted per regime to keep the comparison fair. The
shared manual validation and test sets are then
transformed using the corresponding vectorizer.

Concerning the neural pipeline using BILSTM and
TextCNN, a Keras tokenizer is built for each
training regime and fitted only on its corresponding
training texts, because each regime has its own
vocabulary and typical lengths. Queries are then
converted into padded integer sequences, with
vocabulary size and maximum sequence length
computed independently for each type of training.
The tokenizer uses an explicit “UNK” token to
handle out-of-vocabulary words. Instead of
padding sequences to the maximum length, the
95th percentile® is used as a cutoff (18 tokens for
manual and 17 for augmented). This minimizes
truncation and prevents inefficiently long padding
driven by rare outlier questions, while preserving
the vast majority of data.

3.3 Pre-trained embeddings

To provide the neural models with prior semantic
knowledge and improve generalization, the
embedding layer is initialized with pre-trained
GloVe (Global Vectors for Word Representation)
embeddings (6B 300-dimensional). GloVe is a set
of pre-trained word vectors learned from large
corpora (Wikipedia + Gigaword). It allows the
model to start with meaningful representations of
words rather than learning them from scratch on the
FAQ dataset. For each training regime, an
embedding matrix is built by aligning the tokenizer
vocabulary with the GloVe vectors. Words without
a pre-trained vector are zero-initialized and learned
during training. The embedding layer remains
trainable, allowing fine-tuning to the specific
patterns of university-related queries, while still
benefiting from the broad semantic knowledge

3 This is a common practice used to ignore extreme outliers
while still capturing the majority of the training data. It covers

encoded in GloVe. This is especially useful in a
domain where user phrasing is highly variable.

3.4 Models

Three complementary modelling approaches are
implemented for both training regimes: a solid
classical baseline is compared with lightweight
neural encoders that are widely wused,
computationally efficient and easy to reproduce.
Neural model parameters and configurations were
selected through repeated experimentation to
maximize performance and reduce overfitting,
while maintaining architectures comparable.

Linear SVM: A linear Support Vector Machine
(LinearSVC) trained on TF-IDF features serves as
a strong and cost-effective baseline for intent
classification, offering stable and competitive
performance. TF-IDF provides a simple yet
effective representation of textual data as sparse
numerical vectors, while Linear SVMs are known
for their efficiency in intent detection and similar
classification tasks. Scikit-learn default parameters
are used to emphasize ease of replication.

BiLSTM: A bidirectional Long Short-Term
Memory (BiLSTM) network is used to capture
sequential ~ dependencies  and  contextual
information beyond fixed n-gram windows.
Recurrent neural networks, and LSTMs in
particular, can retain information across tokens,
making them well-suited for intent detection where
crucial cues may appear at any point in a query. The
bidirectional variant is adopted to process the input
text in both forward and backward directions,
allowing the model to learn from past and future
context simultaneously. The architecture consists
of:

* Embedding layer initialised with GloVe
embeddings (trainable);

=  BiLSTM with 64 units and recurrent dropout
(0.2) to prevent overfitting by limiting reliance
on specific sequential patterns;

= Dropout layer (0.3) to further reduce
overfitting;

=  Dense layer with 32 ReLU units for non-linear
feature combination;

= Softmax output layer over the seven intents,
producing probability distributions.

95% of typical sentence lengths and ignores the 5% longest
outliers.



TextCNN: A Text Convolutional Neural Network
(TextCNN) is the final approach. Convolutional
architectures have proven highly effective for text
classification because they can detect local n-gram
patterns that are strong signals of intent. Unlike
recurrent models that process text sequentially,
CNNs process inputs in parallel, making them
efficient with shorter texts such as FAQ questions.
The convolutional filters, which are small matrices
of weights, slide word embeddings to capture
specific patterns of n-grams. The architecture
includes:

* Embedding layer initialised with GloVe
embeddings (trainable);

»  Three parallel Conv1D branches with 64 filters
and kernel sizes of 3, 4, 5 (capturing tri-, four-
and five-gram patterns);

= GlobalMaxPooling1D on each branch to retain
the most salient feature from each filter;

= Concatenation of pooled features from all
branches;

= Dropout layer (0.3) to prevent overfitting;

= Dense layer with 32 ReLU units for non-linear
feature combination;

=  Softmax output layer over the seven intent
categories.

Both neural models are trained using the Adam
optimizer and sparse categorical crossentropy as
the loss function, and accuracy is monitored during
training. Architectural similarity is deliberately
preserved to compare the impact of data
augmentation rather than differences in model
design.

3.5 Training procedure

Training settings are kept consistent across models
to guarantee fair comparisons.

= Early stopping monitors validation loss with
patience=3 and restore best weights=True.
This guards against overfitting and reduces the
effect of seed-specific fluctuations or “lucky
runs”.

*  Models are trained for a maximum of 15
epochs with a batch size of 32, which is
sufficient for convergence under both manual
and augmented regimes, given the use of pre-
trained embeddings.

» To quantify run-to-run variability, each neural
experiment is repeated across five random
seeds (7, 42, 99, 123, 2025) and mean =+

standard deviation results are reported. SVM
remains deterministic under a fixed vectorizer.

This protocol balances rigor and practicality: early
stopping combined with multiple seeds provides
stable estimates, while extensive hyperparameter
exploration was conducted to achieve strong
performance and minimize overfitting.

3.6 Evaluation

Evaluation is conducted exclusively on the manual-
only test set across all experiments. The validation
set is used to guide early stopping and best model
selection before making predictions on the test set.
The following metrics are computed:

= Accuracy: overall percentage of correct
predictions.

= Macro-F1: average F1 score giving equal
weight to all intents, regardless of their size.

=  Weighted-F1: average F1 score accounting for
intent frequencies.

= Per-intent F1: individual F1 score for each
intent label, useful for identifying harder or
underperforming categories.

For all neural models, scores are reported as mean
+ standard deviation across seeds. This provides a
measure of variability and performance stability,
rather than relying on a single run. In addition,
results are displayed for the best run per
model/regime (selected as the seed with the highest
validation-based macro F1, but evaluated on the
test set).

The manual and augmented regimes are compared
for each model using summary tables and
visualizations, such as F1 bar charts and accuracy
boxplots. Cross-model comparisons are also
provided, making it possible to identify which
architectures benefit most from synthetic data and
which ones perform better or make fewer
misclassifications. Beyond standard performance
scores, error analyses are carried out by comparing
percentages of misclassified queries and generating
confusion matrices and error lists. These
diagnostics reveal where models fail, which intents
are harder to detect, and whether augmentation
helps by reducing systematic confusions rather
than merely boosting performance numbers.

Finally, a Gradio-based interactive demo is
included as a proof of concept, illustrating the
practical applicability of the trained models. Users



can freely select a model, type a university-related
question, and receive a predicted intent in real time.

4. Results and Analysis

This section reports the main results, focusing on
overall trends and cross-model comparisons.

Tables 1 and 2 together provide a comprehensive
view of model performance across manual and
augmented training regimes*. All three models
perform competitively (Table 1), with Macro-F1,
Weighted-F1 and Accuracy scores ranging
between 0.78 and 0.84. Neural models outperform
the Linear SVM, especially the augmented
TextCNN, which achieves the best results (Macro-
F1: 0.83; Weighted-F1: 0.84; Accuracy: 0.84);
augmented neural models also show higher
stability (+ 0.01) compared to their manual
counterparts.

When focusing on the relative gains from
augmentation (Table 2), the improvement trend
becomes clearer. Augmentation consistently
increases performance for every model, but the
impact differs: Linear SVM benefits most (+0.03 -
+0.04), while BiLSTM and TextCNN improve
more modestly (+0.02 - +0.03). This indicates that
augmentation is particularly helpful for simpler
models, compensating for their limited
generalization. By contrast, neural models already
capture sequences and context effectively, so
synthetic queries provide smaller improvements.
Overall, these results show that GPT-based
augmentation proves consistently beneficial,
improving every architecture.

Table 1 — Global Summary of Performance across models and
training regimes

Model Training Macro F1 Weighted F1  Accuracy

Linear SVM Manual 0.78 0.78 0.78
Linear SVM  Augmented 0.81 0.82 0.82
BiLSTM Manual 0.79 + 0.02 0.80+0.02 0.80+0.02

BiLSTM Augmented 0.82 +0.01 0.82+0.01 0.82+0.01

TextCNN Manual 0.81 £ 0.02 0.82+0.02 0.82+0.02

TextCNN  Augmented 0.83 +0.01 0.84+0.01 0.84 +0.01

4 Note: SVM results are deterministic single runs; BILSTM
and TextCNN results are reported as mean + standard
deviation across 5 random seeds.

Table 2 — Manual vs. Augmented Differences across models
and training regimes

Model Macro F1 Weighted F1 Accuracy

Linear SVM 0.03 0.04 0.04
BILSTM 0.03 0.02 0.02
TextCNN 0.02 0.02 0.02

To complement the summary tables, Figures 2 and
3 provide a visual summary of the GPT
augmentation effect on Macro F1 and Accuracy
across models. In both scenarios, the orange bars
(augmented) consistently exceed the yellow bars
(manual), making the positive but modest
improvements easier to appreciate at a glance.
While the gains remain small in absolute terms, the
side-by-side view confirms that synthetic data
systematically benefits all three models.
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Moreover, the best-performing runs for neural
models confirm what has been observed, with
TextCNN augmented reaching the highest scores:

= BILSTM - Manual (Seed 2025):
Macro F1 = 0.82, Weighted F1 = 0.82,
Accuracy = 0.82

= BIiLSTM - Augmented (Seed 99):
Macro F1 = 0.84, Weighted F1 = 0.83,
Accuracy = 0.83

= TextCNN — Manual (Seed 2025):
Macro F1 = 0.83, Weighted F1 = 0.84,
Accuracy = 0.83

= TextCNN - Augmented (Seed 2025):
Macro F1 = 0.84, Weighted F1 = 0.85,
Accuracy = 0.85

Table 4 reports the misclassification rates across
models and training regimes. A clear pattern
emerges: error counts decrease progressively from
SVM to BiLSTM to TextCNN, with augmentation
further lowering errors in every case. The Linear
SVM, while showing notable improvement (from
76 to 64 errors), remains the weakest overall. Both
neural models outperform SVM, with TextCNN
trained on augmented data yielding the lowest error
rate (15.1%), corresponding to just 53 misclassified
queries out of 350. These findings reinforce that
synthetic augmentation offers a measurable
benefit.

Table 4 — Misclassified test set queries across models and
training regimes

(Test set size: 350)

Model Training Errors Error Rate (%)

0 Linear SVM Manual 76 21.71
1 Linear SVM Augmented 64 18.29
2 BiLSTM Manual 62 17.71
3 BiLSTM Augmented 58 16.57
4 TextCNN Manual 58 16.57
5 TextCNN  Augmented 53 15.14

Additional diagnostics confirm these trends:

= Confusion matrices show that augmentation
benefits all models, with the largest gains for
SVM, which improves across nearly every
intent. In neural models, improvements are
more selective, with occasional minor noise in
categories that were already stable.

» Inspection of misclassified queries reveals that
many errors are borderline or ambiguous,
suggesting that models often fail where even
human annotators might struggle.

= Per-intent F1 scores show that for SVM,
augmentation improves performance across all
intents, while for neural models, some intents
improve, and the already strong ones remain
stable.

= Variability analysis of Macro-F1 and Accuracy
reveals that augmented models, particularly
TextCNN, achieve slightly higher stability
across seeds.

For more detailed error inspections with confusion
matrices and misclassification examples, granular
per-intent analyses, and distribution boxplots for
variability, see Appendix A, B and C.

5. Conclusion and Future Research

This project investigated intent classification for
university FAQ data, comparing a strong classical
baseline with neural architectures and assessing the
role of synthetic data augmentation.

Regarding the first research question, results
showed that neural models outperformed the
classical baseline. While the Linear SVM with TF-
IDF provided a solid benchmark, both BiLSTM
and TextCNN consistently achieved higher macro-
F1 and accuracy, with TextCNN emerging as the
most stable and effective. The error analysis further
confirmed that neural models produced fewer
misclassifications overall.

Addressing the second research question, synthetic
data augmentation proved beneficial across all
models (+0.02 - 0.04 on Macro F1 and Accuracy),
though its impact varies. The SVM baseline gained
the most, with augmentation acting as a
compensatory mechanism that yielded noticeable
improvements across nearly every intent. For
neural models, gains were smaller but systematic,
enhancing stability across seeds. Only minor noise
was observed in a few intent categories, where
error counts slightly increased. However, carefully
curated augmentation can reliably enrich training
data without harming generalization.

Nevertheless, limitations remain. The taxonomy
was treated as a single-label problem, despite
several queries could plausibly be multi-label;
future work should investigate multi-label
classification to better capture overlapping student
needs. Moreover, the number of synthetic samples
was kept uniform across intent categories,
regardless of their specific size or difficulty;
exploring targeted or intent-specific augmentation
may therefore be a valuable direction. Finally,
experiments were restricted to lightweight models



for interpretability and reproducibility; future
testing might involve more advanced architectures.

Overall, this study provides a reproducible
benchmark that combines methodological insights
with practical evidence for educational intent
classification. By introducing a curated dataset and
demonstrating the benefits of synthetic data
augmentation, it lays the groundwork for future
development of robust intent-based academic
support systems.

References

Al-Tuama, Alaa T., and Dhamyaa A. Nasrawi.
2022. “Intent Classification Using Machine
Learning Algorithms and Augmented Data.” Paper
presented at the 2022 International Conference on
Data Science and Intelligent Computing (ICDSIC),
Karbala University, Karbala, Iraq. IEEE.

Assayed, Suha K., Manar Alkhatib, and Khaled
Shaalan. 2024. “Enhancing Student Services:
Machine Learning Chatbot Intent Recognition for
High School Inquiries.” In BUiID Doctoral
Research Conference 2023, edited by Khalid Al
Marri, Farhan A. Mir, Susan A. David, and
Mohamed Al-Emran, vol. 473 of Lecture Notes in
Civil Engineering. Cham: Springer.

Assayed, Suha, Khaled Shaalan, and Manar
Alkhatib. 2022. “A Chatbot Intent Classifier for
Supporting High School Students.” SSRN
Scholarly Paper, Social Science Research
Network.

Cutler, Ella; Zachary Levonian, and S. Thomas
Christie. 2025. “Detecting Student Intent for Chat-
Based Intelligent Tutoring Systems.” arXiv.

Dinh, Hoa, and Thien Khai Tran. 2023. “EduChat:
An Al-Based Chatbot for University-Related
Information Using a Hybrid Approach.” Applied
Sciences 13, no. 22 (2023): Article 12446.

happyer. “Intent Recognition Technology.”
Medium. September 15, 2024. Last accessed
September 18, 2025.
https://medium.com/@threchappyer/intent-
recognition-technology-e34962b2261b.

Label Your Data. “Intent Classification:
Techniques for NLP Models.” Label Your Data.
Published July 30, 2025. Last accessed September
18, 2025.
https://labelyourdata.com/articles/machine-
learning/intent-classification.

Lyzr.ai. “Understanding Intent Recognition:
Enhance User Interaction” Lyzr Glossaries. Last
accessed September 18, 2025.
https://www.lyzr.ai/glossaries/intent-
recognition/#:~:text=Intent%20recognition%20is
%20a%20pivotal.to%20understand%20and%?20re
spond%?20effectively.

Madruefio, Natalia, Alberto Fernandez-Isabel,
Rubén R. Fernandez, Isaac Martin de Diego, and
Gonzalo Polo Vera. 2025. “Exploring New
Methods of Data Augmentation for Intent
Classification Through Large Language Models.”
In Computational Science and Computational
Intelligence. CSCI 2024, wvol. 2501 of
Communications in Computer and Information
Science, 16-29. Cham: Springer.

Neshaei, Seyed Parsa, Richard Lee Davis, Paola
Mejia-Domenzain, Tanya Nazaretsky, and Tanja
Kaser. 2025. “Bridging the Data Gap: Using LLMs
to Augment Datasets for Text Classification.” In
Proceedings of the 2025 Educational Data Mining
(EDM) Long Papers, paper 54. EDM.

Okonkwo, Chinedu Wilfred, and Abejide Ade-
Ibijola. 2021. “Chatbots Applications in Education:
A Systematic Review”. Computers and Education:
Artificial Intelligence, vol. 2, no. 2, 2021, p.
100033.

Pereira, D. S. M., Falcdo, F., Costa, L., Lunn, B. S.,
Pégo, J. M., & Costa, P. 2023. “Here’s to the future:
Conversational agents in higher education - a
scoping review”. International Journal of
Educational Research,122, 102233.

Peyton, Kevin, Saritha Unnikrishnan, and Brian
Mulligan. 2025. “A Review of University Chatbots
for Student Support: FAQs and Beyond.” Discover
Education 4 (2025): Article 21.

Robson, Paula, Aguiar Neto, D., Romero, D., &
Guerra, P. 2021. “Evaluation of Synthetic Datasets
Generation for Intent Classification Tasks in
Portuguese”. Anais do XIII Simposio Brasileiro de
Tecnologia da Informagdo e da Linguagem
Humana, (pp. 265-274).

Sahu, Gaurav; Pau Rodriguez, Issam H. Laradji,
Parmida Atighehchian, David Vazquez, and
Dzmitry Bahdanau. 2022. “Data Augmentation for
Intent Classification with Off-the-Shelf Large
Language Models.” arXiv.

Sapardic, Jelisaveta. “What Are Chatbot Intents:
Classification, Use Cases, and Training Tips.”
Tidio Blog. April 15, 2025. Last accessed


https://medium.com/@threehappyer/intent-recognition-technology-e34962b2261b
https://medium.com/@threehappyer/intent-recognition-technology-e34962b2261b
https://labelyourdata.com/articles/machine-learning/intent-classification
https://labelyourdata.com/articles/machine-learning/intent-classification
https://www.lyzr.ai/glossaries/intent-recognition/#:~:text=Intent%20recognition%20is%20a%20pivotal,to%20understand%20and%20respond%20effectively
https://www.lyzr.ai/glossaries/intent-recognition/#:~:text=Intent%20recognition%20is%20a%20pivotal,to%20understand%20and%20respond%20effectively
https://www.lyzr.ai/glossaries/intent-recognition/#:~:text=Intent%20recognition%20is%20a%20pivotal,to%20understand%20and%20respond%20effectively
https://www.lyzr.ai/glossaries/intent-recognition/#:~:text=Intent%20recognition%20is%20a%20pivotal,to%20understand%20and%20respond%20effectively

September 18, 2025.

https://www.tidio.com/blog/chatbot-intents/.

Sayedi, Husna. “Intent Recognition in NLP.”
TAUS Resources Blog. September 7, 2021. Last

accessed September 18, 2025.
https://www.taus.net/resources/blog/intent-
recognition-in-nlp.

Tapereal.com. “Chatbot Intent Classification
Guide 2024.” Tapereal Blog. Last accessed
September 18, 2025.

https://web.tapereal.com/blog/chatbot-intent-
classification-guide-2024/.

Appendix
A) Confusion matrices and Error examples

To further inspect model behaviour, confusion
matrices are computed for the SVM and for the best
runs of each neural architecture. These
visualizations highlight per-intent strengths and
weaknesses. Augmentation improves performance
across all models, though with different effects.

For SVM, it consistently reduces misclassifications
across almost all intent categories, most visibly in
“Mobility & Exchange” (13 — 10) and
“Admission & Application (11 — 8).

For BiLSTM, the picture is more mixed:
“Accomodation & Housing” (6 — 1) and “Visa &
Legal Requirements” (13 — 10) improve
substantially, while errors increase in “Fees &
Financial” (5 — 8) and “Student Services &
General Info” (5 — 7). This shows that
augmentation sometimes may introduce noise in
already stable categories.

TextCNN displays the sharpest diagonal overall,
but augmentation has uneven effects. It produces
large improvements in “Admission & Application”
(13 — 6) and “Mobility & Exchange” (7 — 4),
while degrading “Student Services & General Info”
(7 — 9) and “Accomodation & Housing” (3 — 5).

In general, all architectures successfully learnt the
intent structure. Augmentation improves SVM
performance the most, supporting the observation
that synthetic data is especially beneficial for the
weaker baseline. Diagonals are strongest for “Fees
& Financial” and “Academic & Administrative”,
while “Visa & Legal Requirements” remains the
most error-prone, reflecting its smaller category
size and less definite boundaries.
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Here are a few illustrative misclassification
examples reported per model and regime,
highlighting different types of errors (e.g.,
semantic overlap, ambiguity, and borderline cases).

SVM Manual Training

»  “do i have to bring a computer?”
True: Student Services & General Info —
Predicted: Accommodation & Housing
(personal logistics vs. housing needs).

= “When is the deadline to provide my legalised
documents?”
True: Visa & Legal Requirements —
Predicted: Admission & Application
(confusion between administrative and legal
paperwork).

*  “when do i get instructions for the erasmus+
grant?”
True: Mobility & Exchange —
Predicted: Fees & Financial
(confusion because of the word “grant”).

SVM Augmented Training

»  “what are the main deadlines to be
respected?”
True: Student Services & General Info —
Predicted: Admission & Application
(deadlines can be both administrative or
service-related, reflecting ambiguity).

= “how do i view my assignment/roommates
and change them?”
True: Accommodation & Housing —
Predicted: Academic & Administrative
(confusion between housing allocation vs.
academic course assignment).

= “does credit recognition cost anything?”’
True: Fees & Financial —
Predicted: Academic & Administrative
(financial vs. administrative framing of credit
recognition).

BiLSTM Manual Training

»  “what is the deadline for uploading my
thesis?”
True: Academic & Administrative —
Predicted: Admission & Application
(deadlines can be either program
requirements or admission processes).



= “how can i appeal my accommodations
decision?”
True: Student Services & General Info —
Predicted: Accommodation & Housing
(“accommodations” misread as housing
rather than support services).

»  “what immigration documents will i need in
order to travel?”
True: Visa & Legal Requirements —
Predicted: Mobility & Exchange
(confusion between travel logistics and legal
entry requirements).

BiLSTM Augmented Training

»  “What happens if i don’t have these
documents?”
True: Admission & Application —
Predicted: Student Services & General Info
(uncertainty about paperwork classified as
generic student support rather than
admissions).

= “are there any travel allowances?”’
True: Fees & Financial —
Predicted: Student Services & General Info
(funding vs. general student benefits
confusion).

»  “how long can i be a visiting student?”
True: Academic & Administrative —
Predicted: Student Services & General Info
(borderline case: administrative rule vs.
general information).

TextCNN Manual Training

»  “what is the port of entry and what needs to
be done?”
True: Visa & Legal Requirements —
Predicted: Admission & Application
(travel/visa logistics mistaken for application
paperwork).

»  “can you send me my degree certificate?”
True: Academic & Administrative —
Predicted: Student Services & General Info
(similarity between academic document
request vs. support service query)

= “when do i receive the travel support?”’
True: Mobility & Exchange —
Predicted: Student Services & General Info
(exchange-related aid confused due to the
absence of an Erasmus-related term)

TextCNN Augmented Training

= “how do i pay for my tuition while on
exchange?”
True: Fees & Financial —
Predicted: Mobility & Exchange
(financial matters blurred with exchange
program logistics).

= “do you provide homestay services?”
True: Accommodation & Housing —
Predicted: Student Services & General Info
(housing-related query softened into generic
support services).

= “how do i check my dining dollar balance?”
True: Fees & Financial —
Predicted: Student Services & General Info
(financial vs. general campus services).

Many misclassifications appear borderline rather
than absolute errors, reflecting the inherent
ambiguity of some student questions. In such cases,
where even human annotators might disagree in
choosing the intent, a multi-label setup could
arguably be more appropriate. This observation
suggests that the models are not failing
dramatically but rather struggling with the same
fuzzy boundaries that exist in real-world intent
classification.

B) Per-intent F1 scores

Three bar charts examine per-intent F1 scores
across models and training regimes. These
visualizations highlight which specific intent
categories benefit most from synthetic data.

Across all three graphs, augmentation generally
shifts bars upward, indicating consistent per-intent
F1 gains. For the SVM, the lift is visible on nearly
every category, with the most noticeable jumps on
the last two (“Student Services & General Info”
and “Visa & Legal Requirements”). For BiLSTM,
improvements are again broad-based: “Mobility &
Exchange” shows clear gains, while already strong
intents, like “Fees & Financial”, remain high. For
TextCNN, synthetic data mostly improves or
preserves performance, but shows a slight dip for
“Visa & Legal Requirements”. Overall, the
improvements after augmentation are visible, but
small differences between the intents suggest that
intent-specific augmentation may provide further
benefit.
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C) Macro F1 and Accuracy Variability

Four boxplots, two for each neural model, are
generated to visualize how Macro-F1 and
Accuracy vary across five random seeds. In all
plots, the median (centre orange line) for the
augmented regime is higher, and the IQR/whiskers
are slightly tighter. This confirms that
augmentation yields small but consistent gains and
equal or better stability. For TextCNN in particular,
the augmented distributions are notably tight,
indicating very high stability. Overall, aligning
with the earlier visualizations, gains are modest but
systematic.
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