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Abstract: As universities transition from static FAQ platforms to interactive conversational systems, intent 

classification of student queries emerges as a key challenge for effective human-machine communication. This 

paper explores how different modelling strategies perform in mapping queries to a structured set of seven 

intent categories, with a particular focus on the impact of synthetic augmentation. The models are trained on a 

newly created University FAQ dataset of manually collected questions, expanded with GPT-based 

augmentation. A classical baseline (TF-IDF + Linear SVM) is compared with neural architectures (BiLSTM 

and TextCNN), under both manual and augmented training regimes. Results show that augmentation 

consistently improves F1 and accuracy (+0.02 - 0.04) across all models. More complex architectures perform 

better but gain less from augmentation. Error analyses, comparative visualizations and an interactive demo 

offer practical insights. The study provides a robust foundation for building precise and adaptable intent 

classifiers in educational domains. 

Key Words: Intent Classification, University FAQ, Data Augmentation, SVM, BiLSTM, TextCNN, Student 

Support, NLP 

 

1. Introduction and Background 

For university students, questioning is not only a 

path to knowledge but also a necessity of daily life. 

From admission and academic processes to 

housing, visas, and mobility information, 

international students face constant uncertainties 

and require real-time support. Universities have 

traditionally provided guidance by relying on 

digital helpdesks and FAQ web pages, but these 

systems are inherently limited and static: they force 

students to adapt their queries to rigid categories or 

submit request forms for later human follow-up.  

To enable progress, many institutions are now 

experimenting with chatbots and virtual assistants, 

which can reduce staff workload and provide 

immediate, personalized assistance (Okonkwo & 

Abejide, 2021). However, the quality of these 

interactions depends critically on a system’s ability 

to correctly recognize both explicit and implicit 

user intentions. While conversation feels effortless 

to humans because it is instinctive and deeply 

rooted in our evolution, its contextual richness and 

variability make it hard to codify for machines. 

Moreover, student queries can be phrased in 

countless ways and span a wide range of topics. 

Addressing these challenges is precisely the role of 

intent classification, a core task in natural language 

processing that maps unstructured questions to 

structured categories of meaning, identifying the 

underlying purpose behind a query. Accurate intent 

classification drives intelligent chatbots and 

conversational agents, enabling the transition from 

static platforms to more dynamic and interactive 

dialogue solutions (Pereira et al., 2023). 

Two key factors drive this study. First, there is a 

scarcity of well-curated datasets and transparent 

pipelines that connect domain-specific data to 

clearly specified models, limiting systematic 

progress in educational NLP (Peyton et al., 2025; 

Pereira et al., 2023). Second, building large labeled 

datasets requires intensive manual effort, whereas 

artificial data generated by LLMs may offer a 

promising way to expand resources. Recent 

research suggests that GPT-based augmentation 

can indeed enrich models’ training, though effects 

vary across contexts: while it has been shown to 

boost performance on intent classification tasks 

(Sahu et al., 2022; Madrueño et al., 2025), its 

benefits depend on intent clarity and often require 

human-in-the-loop validation. Similarly, structured 

augmentation pipelines have been found to 

systematically improve accuracy on educational 

datasets (Neshaei et al., 2025; Robson et al., 2021).  



The goals are here both empirical and practical: to 

establish a clean and reproducible baseline for 

intent classification in the university FAQ domain, 

grounded in a well-documented dataset and 

experimental protocol; and to quantify the 

contribution of synthetic data on classification 

performance, analysing whether greater linguistic 

variability helps model generalization1. 

Accordingly, the work is structured around two 

research questions: 

▪ RQ1 (Modelling): How do a strong classical 

baseline (linear SVM with TF-IDF) and 

lightweight neural models (BiLSTM and 

TextCNN with pretrained embeddings) 

compare on university FAQ intent 

classification? 

▪ RQ2 (Augmentation): Does adding 

automatically generated questions to the 

training set help models perform better, or does 

it introduce noise that obscures intents? 

The dataset consists of 3500 university-related 

questions, which were manually collected, 

annotated across seven intents, and later expanded 

with GPT-generated examples to a total of 5040 

queries. While prior studies have demonstrated that 

even small datasets and simple classifiers can 

achieve strong results (Assayed et al., 2022), and 

that classical models often remain competitive 

baselines (Al-Tuama & Nasrawi, 2022), this 

project aims to systematically evaluate both 

classical and neural approaches on educational 

intent recognition. At the same time, the focus 

relies on comparing the two training regimes: 

manual-only vs. manual + synthetic. 

The methodology section details the full 

experimental pipeline, while the results examine 

performance metrics across models and intents, 

with particular attention to where augmentation 

proves most beneficial. These findings are 

complemented by error analyses and comparative 

visualizations that offer deeper insights. Finally, an 

interactive demo illustrates the practical potential 

and usability of the models for real-world student 

queries. The paper concludes by discussing 

implications and future research. 

2. Dataset and Project Foundations 

The study builds on the first stage of the project, 

which focused on building and annotating a high-

 
1 Generalization in the field of natural language processing 

(NLP) is the ability of models to efficiently make predictions 

quality English-language dataset for university 

FAQ intent classification (Fig. 1). Motivated by the 

scarcity of structured and machine-readable 

resources for intent classification in academic 

contexts (Peyton et al., 2025; Okonkwo & Abejide, 

2021), real or realistic student questions were 

collected from institutional websites worldwide. 

Using the BootCaT toolkit and a custom Python 

extraction script, the queries were automatically 

gathered and then manually reviewed to remove 

duplicates and out-of-domain entries, resulting in 

2179 valid examples. To further enrich the dataset 

and capture greater diversity, 1321 additional 

questions were manually sourced from various 

university platforms and international FAQ pages. 

This combined effort led to the production of a 

manual dataset of 3500 questions, all related to the 

university ecosystem and student support. 

A seven-intent taxonomy was meticulously 

developed to capture the most frequent student 

needs (Academic & Administrative; 

Accommodation & Housing; Admission & 

Application; Fees & Financial; Mobility & 

Exchange; Student Services & General Info; Visa 

& Legal Requirements). Annotation was carried 

out in INCEpTION under prescriptive guidelines, 

assigning a single intent label to each question. To 

ensure reliability, 20% of data was double-

annotated, achieving almost perfect inter-annotator 

agreement (κ = 0.91). The finalized annotations 

were then exported and processed through a 

dedicated Python script to generate a clean and 

model-ready .xlsx file.  

To increase linguistic variety and enable evaluation 

of synthetic augmentation, the dataset was further 

expanded with 1540 GPT-generated questions. A 

custom GPT assistant was created and trained with 

specific instructions to generate balanced sets of 

220 queries per intent category. All outputs were 

then manually checked, and intent labels were 

corrected whenever the automatic intent 

assignment was incorrect. The resulting final 

corpus contains 5040 questions, structured in a 

clear and reproducible way, suitable for inspection 

and ready for subsequent model training. The 

present paper takes the next step: evaluating 

different modelling strategies and quantifying the 

impact of GPT-based augmentation on intent 

classification. 

on previously unseen data based on what it has learned from 

the training data. 



 

Fig. 1 – Dataset Creation and Augmentation 

Pipeline 

3. Methodology and Experimental Setup 

This section outlines the pipeline for training and 

evaluating intent classifiers on university-related 

queries, summarizing the code script2 and covering 

preprocessing, data partitioning, feature 

representations, model architectures, training 

procedures and evaluation metrics. All choices aim 

at reproducibility, realistic evaluation, maximizing 

performance, and practicality for student-support 

deployment.  

Intent classification is framed as a single-label 

classification task, with all experiments operating 

at the question (single-sentence) level. The 

objective is to automatically map each question to 

one of the 7 predefined intent categories covering 

key student-facing domains. Models are trained 

and compared under two training regimes designed 

to test the effect of synthetic augmentation: 

▪ Manual: models are trained only on human-

collected and annotated questions. 

▪ Augmented: models are trained on the union 

of manual and GPT-generated questions. 

 
2 Portions of the code were developed with the support of 

ChatGPT (OpenAI), used strictly as an assistant to suggest 

possible solutions or approaches. All generated content was 

Throughout the code and this paper, when a model 

is labeled “manual” or “augmented”, this refers 

only to the training set composition. 

3.1 General Data Preparation 

Preprocessing: After uploading the dataset, the 

two data sources, manual and augmented, are 

loaded into separate data frames and checked for 

consistency in shape and scheme. Light text 

cleaning is applied, limited to whitespace trimming 

and lowercasing, while no stemming, 

lemmatization, or stopword removal is performed. 

This minimal normalization is intentionally 

adopted to preserve the natural linguistic variety of 

student queries and avoid removing semantic cues 

that could carry informative patterns or be decisive 

to detect intents.  

Partitioning: Data splitting is performed only on 

the manual dataset, using stratification by intent to 

maintain label proportions. An 80/10/10 partition is 

chosen to maximize the amount of data available 

for training, given the relatively limited dataset 

size. A fixed random seed (42) ensures 

reproducibility. The GPT-based augmentation data 

is shuffled to avoid unwanted ordering patterns. It 

is then merged with the manual training set to form 

the augmented training regime, which is also re-

shuffled to avoid ordering effects. The resulting 

splits maintain balanced intent proportions, with 

light imbalances being moderated after the addition 

of synthetic queries. In both training regimes, 

validation and test sets remain strictly manual-

only. This design choice prevents synthetic 

paraphrases from leaking into evaluation, ensuring 

that test scores reflect real-world performance on 

genuine, human-written student queries. It also 

mirrors real deployment, where the system will 

encounter natural queries rather than synthetic 

ones. 

Label Encoding: A single LabelEncoder from the 

Scikit-learn library is fitted on the intent labels 

found in the manual dataset. The encoder converts 

text-based intents into numeric IDs, producing a 

consistent mapping (label string → integer ID) that 

ensures reproducibility throughout the pipeline. 

This guarantees that the same intent is always 

assigned the same index across all experiments, 

training regimes and model comparisons.  

carefully reviewed and validated by the author, ensuring 

responsible and transparent use of AI tools. 



3.2 Text representations  

Two types of text representations are used, each 

tailored to the corresponding model family. 

For the classical pipeline using SVM, queries are 

vectorized with TF–IDF, capturing both unigrams 

and bigrams (ngram_range=(1,2)), with a 

minimum document frequency (min_df=2) to drop 

very rare terms. Since each training regime has a 

different data distribution and uses features learned 

from its own training data, separate vectorizers are 

fitted per regime to keep the comparison fair. The 

shared manual validation and test sets are then 

transformed using the corresponding vectorizer. 

Concerning the neural pipeline using BiLSTM and 

TextCNN, a Keras tokenizer is built for each 

training regime and fitted only on its corresponding 

training texts, because each regime has its own 

vocabulary and typical lengths. Queries are then 

converted into padded integer sequences, with 

vocabulary size and maximum sequence length 

computed independently for each type of training. 

The tokenizer uses an explicit “UNK” token to 

handle out-of-vocabulary words. Instead of 

padding sequences to the maximum length, the 

95th percentile3 is used as a cutoff (18 tokens for 

manual and 17 for augmented). This minimizes 

truncation and prevents inefficiently long padding 

driven by rare outlier questions, while preserving 

the vast majority of data.  

3.3 Pre-trained embeddings 

To provide the neural models with prior semantic 

knowledge and improve generalization, the 

embedding layer is initialized with pre-trained 

GloVe (Global Vectors for Word Representation) 

embeddings (6B 300-dimensional). GloVe is a set 

of pre-trained word vectors learned from large 

corpora (Wikipedia + Gigaword). It allows the 

model to start with meaningful representations of 

words rather than learning them from scratch on the 

FAQ dataset. For each training regime, an 

embedding matrix is built by aligning the tokenizer 

vocabulary with the GloVe vectors. Words without 

a pre-trained vector are zero-initialized and learned 

during training. The embedding layer remains 

trainable, allowing fine-tuning to the specific 

patterns of university-related queries, while still 

benefiting from the broad semantic knowledge 

 
3 This is a common practice used to ignore extreme outliers 

while still capturing the majority of the training data. It covers 

encoded in GloVe. This is especially useful in a 

domain where user phrasing is highly variable.  

3.4 Models 

Three complementary modelling approaches are 

implemented for both training regimes: a solid 

classical baseline is compared with lightweight 

neural encoders that are widely used, 

computationally efficient and easy to reproduce. 

Neural model parameters and configurations were 

selected through repeated experimentation to 

maximize performance and reduce overfitting, 

while maintaining architectures comparable. 

Linear SVM: A linear Support Vector Machine 

(LinearSVC) trained on TF–IDF features serves as 

a strong and cost-effective baseline for intent 

classification, offering stable and competitive 

performance. TF-IDF provides a simple yet 

effective representation of textual data as sparse 

numerical vectors, while Linear SVMs are known 

for their efficiency in intent detection and similar 

classification tasks. Scikit-learn default parameters 

are used to emphasize ease of replication. 

BiLSTM: A bidirectional Long Short-Term 

Memory (BiLSTM) network is used to capture 

sequential dependencies and contextual 

information beyond fixed n-gram windows. 

Recurrent neural networks, and LSTMs in 

particular, can retain information across tokens, 

making them well-suited for intent detection where 

crucial cues may appear at any point in a query. The 

bidirectional variant is adopted to process the input 

text in both forward and backward directions, 

allowing the model to learn from past and future 

context simultaneously. The architecture consists 

of: 

▪ Embedding layer initialised with GloVe 

embeddings (trainable); 

▪ BiLSTM with 64 units and recurrent dropout 

(0.2) to prevent overfitting by limiting reliance 

on specific sequential patterns; 

▪ Dropout layer (0.3) to further reduce 

overfitting; 

▪ Dense layer with 32 ReLU units for non-linear 

feature combination; 

▪ Softmax output layer over the seven intents, 

producing probability distributions. 

95% of typical sentence lengths and ignores the 5% longest 

outliers. 



TextCNN: A Text Convolutional Neural Network 

(TextCNN) is the final approach. Convolutional 

architectures have proven highly effective for text 

classification because they can detect local n-gram 

patterns that are strong signals of intent. Unlike 

recurrent models that process text sequentially, 

CNNs process inputs in parallel, making them 

efficient with shorter texts such as FAQ questions. 

The convolutional filters, which are small matrices 

of weights, slide word embeddings to capture 

specific patterns of n-grams. The architecture 

includes: 

▪ Embedding layer initialised with GloVe 

embeddings (trainable); 

▪ Three parallel Conv1D branches with 64 filters 

and kernel sizes of 3, 4, 5 (capturing tri-, four- 

and five-gram patterns); 

▪ GlobalMaxPooling1D on each branch to retain 

the most salient feature from each filter; 

▪ Concatenation of pooled features from all 

branches; 

▪ Dropout layer (0.3) to prevent overfitting; 

▪ Dense layer with 32 ReLU units for non-linear 

feature combination; 

▪ Softmax output layer over the seven intent 

categories. 

Both neural models are trained using the Adam 

optimizer and sparse categorical crossentropy as 

the loss function, and accuracy is monitored during 

training. Architectural similarity is deliberately 

preserved to compare the impact of data 

augmentation rather than differences in model 

design. 

3.5 Training procedure 

Training settings are kept consistent across models 

to guarantee fair comparisons. 

▪ Early stopping monitors validation loss with 

patience=3 and restore_best_weights=True. 

This guards against overfitting and reduces the 

effect of seed-specific fluctuations or “lucky 

runs”. 

▪ Models are trained for a maximum of 15 

epochs with a batch size of 32, which is 

sufficient for convergence under both manual 

and augmented regimes, given the use of pre-

trained embeddings. 

▪ To quantify run-to-run variability, each neural 

experiment is repeated across five random 

seeds (7, 42, 99, 123, 2025) and mean ± 

standard deviation results are reported. SVM 

remains deterministic under a fixed vectorizer. 

This protocol balances rigor and practicality: early 

stopping combined with multiple seeds provides 

stable estimates, while extensive hyperparameter 

exploration was conducted to achieve strong 

performance and minimize overfitting. 

3.6 Evaluation 

Evaluation is conducted exclusively on the manual-

only test set across all experiments. The validation 

set is used to guide early stopping and best model 

selection before making predictions on the test set. 

The following metrics are computed: 

▪ Accuracy: overall percentage of correct 

predictions. 

▪ Macro-F1: average F1 score giving equal 

weight to all intents, regardless of their size. 

▪ Weighted-F1: average F1 score accounting for 

intent frequencies. 

▪ Per-intent F1: individual F1 score for each 

intent label, useful for identifying harder or 

underperforming categories. 

For all neural models, scores are reported as mean 

± standard deviation across seeds. This provides a 

measure of variability and performance stability, 

rather than relying on a single run. In addition, 

results are displayed for the best run per 

model/regime (selected as the seed with the highest 

validation-based macro F1, but evaluated on the 

test set).  

The manual and augmented regimes are compared 

for each model using summary tables and 

visualizations, such as F1 bar charts and accuracy 

boxplots. Cross-model comparisons are also 

provided, making it possible to identify which 

architectures benefit most from synthetic data and 

which ones perform better or make fewer 

misclassifications. Beyond standard performance 

scores, error analyses are carried out by comparing 

percentages of misclassified queries and generating 

confusion matrices and error lists. These 

diagnostics reveal where models fail, which intents 

are harder to detect, and whether augmentation 

helps by reducing systematic confusions rather 

than merely boosting performance numbers. 

Finally, a Gradio-based interactive demo is 

included as a proof of concept, illustrating the 

practical applicability of the trained models. Users 



can freely select a model, type a university-related 

question, and receive a predicted intent in real time. 

4. Results and Analysis 

This section reports the main results, focusing on 

overall trends and cross-model comparisons. 

Tables 1 and 2 together provide a comprehensive 

view of model performance across manual and 

augmented training regimes4. All three models 

perform competitively (Table 1), with Macro-F1, 

Weighted-F1 and Accuracy scores ranging 

between 0.78 and 0.84. Neural models outperform 

the Linear SVM, especially the augmented 

TextCNN, which achieves the best results (Macro-

F1: 0.83; Weighted-F1: 0.84; Accuracy: 0.84); 

augmented neural models also show higher 

stability (± 0.01) compared to their manual 

counterparts.  

When focusing on the relative gains from 

augmentation (Table 2), the improvement trend 

becomes clearer. Augmentation consistently 

increases performance for every model, but the 

impact differs: Linear SVM benefits most (+0.03 - 

+0.04), while BiLSTM and TextCNN improve 

more modestly (+0.02 - +0.03). This indicates that 

augmentation is particularly helpful for simpler 

models, compensating for their limited 

generalization. By contrast, neural models already 

capture sequences and context effectively, so 

synthetic queries provide smaller improvements. 

Overall, these results show that GPT-based 

augmentation proves consistently beneficial, 

improving every architecture. 

Table 1 – Global Summary of Performance across models and 

training regimes 

 

 

 

 
4 Note: SVM results are deterministic single runs; BiLSTM 

and TextCNN results are reported as mean ± standard 

deviation across 5 random seeds. 

Table 2 – Manual vs. Augmented Differences across models 

and training regimes 

 

To complement the summary tables, Figures 2 and 

3 provide a visual summary of the GPT 

augmentation effect on Macro F1 and Accuracy 

across models. In both scenarios, the orange bars 

(augmented) consistently exceed the yellow bars 

(manual), making the positive but modest 

improvements easier to appreciate at a glance. 

While the gains remain small in absolute terms, the 

side-by-side view confirms that synthetic data 

systematically benefits all three models. 

 

Fig. 2 – Bar Charts comparing Macro F1 across models and 

training regimes 

 

Fig. 3 – Bar Charts comparing Accuracy across models and 

training regimes 



Moreover, the best-performing runs for neural 

models confirm what has been observed, with 

TextCNN augmented reaching the highest scores: 

▪ BiLSTM – Manual (Seed 2025):  

Macro F1 = 0.82, Weighted F1 = 0.82, 

Accuracy = 0.82 

▪ BiLSTM – Augmented (Seed 99):  

Macro F1 = 0.84, Weighted F1 = 0.83, 

Accuracy = 0.83 

▪ TextCNN – Manual (Seed 2025):  

Macro F1 = 0.83, Weighted F1 = 0.84, 

Accuracy = 0.83 

▪ TextCNN – Augmented (Seed 2025):  

Macro F1 = 0.84, Weighted F1 = 0.85, 

Accuracy = 0.85 

Table 4 reports the misclassification rates across 

models and training regimes. A clear pattern 

emerges: error counts decrease progressively from 

SVM to BiLSTM to TextCNN, with augmentation 

further lowering errors in every case. The Linear 

SVM, while showing notable improvement (from 

76 to 64 errors), remains the weakest overall. Both 

neural models outperform SVM, with TextCNN 

trained on augmented data yielding the lowest error 

rate (15.1%), corresponding to just 53 misclassified 

queries out of 350. These findings reinforce that 

synthetic augmentation offers a measurable 

benefit. 

Table 4 – Misclassified test set queries across models and 

training regimes 

 

Additional diagnostics confirm these trends: 

▪ Confusion matrices show that augmentation 

benefits all models, with the largest gains for 

SVM, which improves across nearly every 

intent. In neural models, improvements are 

more selective, with occasional minor noise in 

categories that were already stable. 

▪ Inspection of misclassified queries reveals that 

many errors are borderline or ambiguous, 

suggesting that models often fail where even 

human annotators might struggle. 

▪ Per-intent F1 scores show that for SVM, 

augmentation improves performance across all 

intents, while for neural models, some intents 

improve, and the already strong ones remain 

stable.  

▪ Variability analysis of Macro-F1 and Accuracy 

reveals that augmented models, particularly 

TextCNN, achieve slightly higher stability 

across seeds.  

For more detailed error inspections with confusion 

matrices and misclassification examples, granular 

per-intent analyses, and distribution boxplots for 

variability, see Appendix A, B and C. 

5. Conclusion and Future Research 

This project investigated intent classification for 

university FAQ data, comparing a strong classical 

baseline with neural architectures and assessing the 

role of synthetic data augmentation. 

Regarding the first research question, results 

showed that neural models outperformed the 

classical baseline. While the Linear SVM with TF-

IDF provided a solid benchmark, both BiLSTM 

and TextCNN consistently achieved higher macro-

F1 and accuracy, with TextCNN emerging as the 

most stable and effective. The error analysis further 

confirmed that neural models produced fewer 

misclassifications overall. 

Addressing the second research question, synthetic 

data augmentation proved beneficial across all 

models (+0.02 - 0.04 on Macro F1 and Accuracy), 

though its impact varies. The SVM baseline gained 

the most, with augmentation acting as a 

compensatory mechanism that yielded noticeable 

improvements across nearly every intent. For 

neural models, gains were smaller but systematic, 

enhancing stability across seeds.  Only minor noise 

was observed in a few intent categories, where 

error counts slightly increased. However, carefully 

curated augmentation can reliably enrich training 

data without harming generalization. 

Nevertheless, limitations remain. The taxonomy 

was treated as a single-label problem, despite 

several queries could plausibly be multi-label; 

future work should investigate multi-label 

classification to better capture overlapping student 

needs. Moreover, the number of synthetic samples 

was kept uniform across intent categories, 

regardless of their specific size or difficulty; 

exploring targeted or intent-specific augmentation 

may therefore be a valuable direction. Finally, 

experiments were restricted to lightweight models 



for interpretability and reproducibility; future 

testing might involve more advanced architectures. 

Overall, this study provides a reproducible 

benchmark that combines methodological insights 

with practical evidence for educational intent 

classification. By introducing a curated dataset and 

demonstrating the benefits of synthetic data 

augmentation, it lays the groundwork for future 

development of robust intent-based academic 

support systems. 
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Appendix 

A) Confusion matrices and Error examples 

To further inspect model behaviour, confusion 

matrices are computed for the SVM and for the best 

runs of each neural architecture. These 

visualizations highlight per-intent strengths and 

weaknesses. Augmentation improves performance 

across all models, though with different effects.  

For SVM, it consistently reduces misclassifications 

across almost all intent categories, most visibly in 

“Mobility & Exchange” (13 → 10) and 

“Admission & Application (11 → 8).    

For BiLSTM, the picture is more mixed: 

“Accomodation & Housing” (6 → 1) and “Visa & 

Legal Requirements” (13 → 10) improve 

substantially, while errors increase in “Fees & 

Financial” (5 → 8) and “Student Services & 

General Info” (5 → 7). This shows that 

augmentation sometimes may introduce noise in 

already stable categories.  

TextCNN displays the sharpest diagonal overall, 

but augmentation has uneven effects. It produces 

large improvements in “Admission & Application” 

(13 → 6) and “Mobility & Exchange” (7 → 4), 

while degrading “Student Services & General Info” 

(7 → 9) and “Accomodation & Housing” (3 → 5). 

In general, all architectures successfully learnt the 

intent structure. Augmentation improves SVM 

performance the most, supporting the observation 

that synthetic data is especially beneficial for the 

weaker baseline. Diagonals are strongest for “Fees 

& Financial” and “Academic & Administrative”, 

while “Visa & Legal Requirements” remains the 

most error-prone, reflecting its smaller category 

size and less definite boundaries. 
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Here are a few illustrative misclassification 

examples reported per model and regime, 

highlighting different types of errors (e.g., 

semantic overlap, ambiguity, and borderline cases). 

SVM Manual Training  

▪ “do i have to bring a computer?” 

True: Student Services & General Info → 

Predicted: Accommodation & Housing 

(personal logistics vs. housing needs). 

 

▪ “when is the deadline to provide my legalised 

documents?” 

True: Visa & Legal Requirements → 

Predicted: Admission & Application 

(confusion between administrative and legal 

paperwork). 

 

▪ “when do i get instructions for the erasmus+ 

grant?” 

True: Mobility & Exchange →  

Predicted: Fees & Financial 

(confusion because of the word “grant”). 

SVM Augmented Training  

▪ “what are the main deadlines to be 

respected?” 

True: Student Services & General Info → 

Predicted: Admission & Application 

(deadlines can be both administrative or 

service-related, reflecting ambiguity). 

 

▪ “how do i view my assignment/roommates 

and change them?” 

True: Accommodation & Housing → 

Predicted: Academic & Administrative 

(confusion between housing allocation vs. 

academic course assignment). 

 

▪ “does credit recognition cost anything?” 

True: Fees & Financial →  

Predicted: Academic & Administrative 

(financial vs. administrative framing of credit 

recognition). 

BiLSTM Manual Training 

▪ “what is the deadline for uploading my 

thesis?” 

True: Academic & Administrative → 

Predicted: Admission & Application 

(deadlines can be either program 

requirements or admission processes). 

 



▪ “how can i appeal my accommodations 

decision?” 

True: Student Services & General Info → 

Predicted: Accommodation & Housing 

(“accommodations” misread as housing 

rather than support services). 

 

▪ “what immigration documents will i need in 

order to travel?” 

True: Visa & Legal Requirements → 

Predicted: Mobility & Exchange 

(confusion between travel logistics and legal 

entry requirements). 

BiLSTM Augmented Training 

▪ “what happens if i don’t have these 

documents?” 

True: Admission & Application →  

Predicted: Student Services & General Info 

(uncertainty about paperwork classified as 

generic student support rather than 

admissions). 

 

▪ “are there any travel allowances?” 

True: Fees & Financial →  

Predicted: Student Services & General Info 

(funding vs. general student benefits 

confusion). 

 

▪ “how long can i be a visiting student?” 

True: Academic & Administrative → 

Predicted: Student Services & General Info 

(borderline case: administrative rule vs. 

general information). 

TextCNN Manual Training  

▪ “what is the port of entry and what needs to 

be done?” 

True: Visa & Legal Requirements → 

Predicted: Admission & Application 

(travel/visa logistics mistaken for application 

paperwork). 

 

▪ “can you send me my degree certificate?” 

True: Academic & Administrative → 

Predicted: Student Services & General Info 

(similarity between academic document 

request vs. support service query) 

 

▪ “when do i receive the travel support?” 

True: Mobility & Exchange →  

Predicted: Student Services & General Info 

(exchange-related aid confused due to the 

absence of an Erasmus-related term) 

TextCNN Augmented Training  

▪ “how do i pay for my tuition while on 

exchange?” 

True: Fees & Financial →  

Predicted: Mobility & Exchange 

(financial matters blurred with exchange 

program logistics). 

 

▪ “do you provide homestay services?” 

True: Accommodation & Housing → 

Predicted: Student Services & General Info 

(housing-related query softened into generic 

support services). 

 

▪ “how do i check my dining dollar balance?” 

True: Fees & Financial →  

Predicted: Student Services & General Info 

(financial vs. general campus services). 

Many misclassifications appear borderline rather 

than absolute errors, reflecting the inherent 

ambiguity of some student questions. In such cases, 

where even human annotators might disagree in 

choosing the intent, a multi-label setup could 

arguably be more appropriate. This observation 

suggests that the models are not failing 

dramatically but rather struggling with the same 

fuzzy boundaries that exist in real-world intent 

classification. 

 

B) Per-intent F1 scores 

Three bar charts examine per-intent F1 scores 

across models and training regimes. These 

visualizations highlight which specific intent 

categories benefit most from synthetic data. 

Across all three graphs, augmentation generally 

shifts bars upward, indicating consistent per-intent 

F1 gains. For the SVM, the lift is visible on nearly 

every category, with the most noticeable jumps on 

the last two (“Student Services & General Info” 

and “Visa & Legal Requirements”). For BiLSTM, 

improvements are again broad-based: “Mobility & 

Exchange” shows clear gains, while already strong 

intents, like “Fees & Financial”, remain high. For 

TextCNN, synthetic data mostly improves or 

preserves performance, but shows a slight dip for 

“Visa & Legal Requirements”. Overall, the 

improvements after augmentation are visible, but 

small differences between the intents suggest that 

intent-specific augmentation may provide further 

benefit. 

 



 

 

 

 

 

 

 

 

 

 

C) Macro F1 and Accuracy Variability  

Four boxplots, two for each neural model, are 

generated to visualize how Macro-F1 and 

Accuracy vary across five random seeds. In all 

plots, the median (centre orange line) for the 

augmented regime is higher, and the IQR/whiskers 

are slightly tighter. This confirms that 

augmentation yields small but consistent gains and 

equal or better stability. For TextCNN in particular, 

the augmented distributions are notably tight, 

indicating very high stability. Overall, aligning 

with the earlier visualizations, gains are modest but 

systematic. 

 

 

 

 

 

 



 

 

 

 


