

DIT PhD Introduction to Computational Thinking and Programming

Lesson 1. Computational Thinking

Alberto Barrón-Cedeño a.barron@unibo.it

29/10/2024

L'idonietà

This activity includes two modules: Programming and Statistics

You will submit your solution to a couple of problems/exercises from each module

Details at due time

A. Barrón-Cedeño

DIT, PhD

2024 2 / 35

Table of Contents

1. You and your instructor

2. Contents

3. Computational Thinking

You and your instructor

A. Barrón-Cedeño

DIT, PhD

Quick Introduction				
Who are you?				
		DLD	0004	5 ()5
A. Barrón-Cedeño	DIT	PhD	2024	5 / 35

PhDs that I am supervising

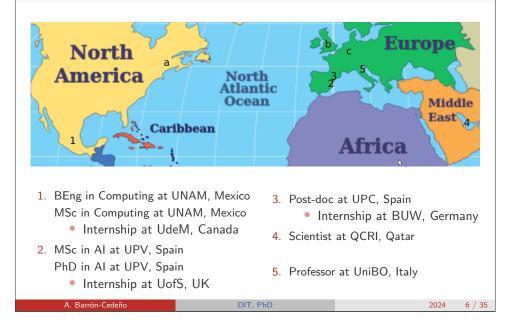
4th year (about to graduate)

Arianna Muti

Hidden in Plain Sight: Detecting Misogyny beneath Ambiguities and Implicit Bias in Language

- Internship at Expert.ai (Modena, Italy)
- Internship at U. of Groningen (Groningen, The Netherlands)
- 10+ peer-reviewed full papers published (one upcoming at EMNLP)
- Transitioning towards a PostDoc at Bocconi University

Katerina Korre


A Universal and Cross-language Approach to Internet Hate Speech Detection and Analysis

- Internship at Symanto.ai (Valencia, Spain)
- 8+ peer-reviewed full papers published (two under review in journals)
- Transitioning towards a PostDoc at Athens University

DIT, PhD

2024 7 / 35

The instructor

PhDs that I am supervising

2nd year

Paolo Gajo

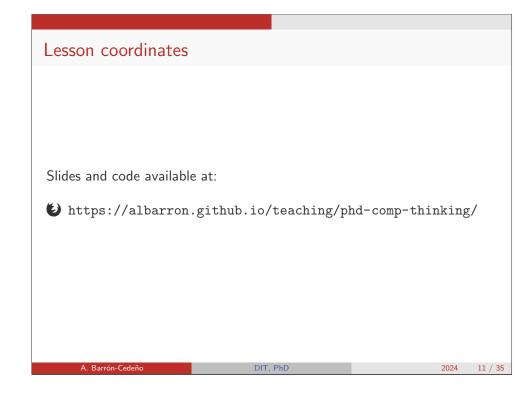
NLP Technologies for Gastronomy

- Internship at Dalhousie University (Halifax, Canada)
- 4+ peer-reviewed full papers published (two during his masters)

Unfinished

Francesco Fernicola

Return to the Source: Assessing Machine Translation Suitability


- In co-supervision with EURAC Research (Bolzano, Italy)
- 5+ peer-reviewed full papers published (two during his masters)
- Currently Computational Linguist at the European Parliament

DIT, PhD

Computing at DIT Recent and ongoing research projects¹

- UpSkills on upgrading the (technological) skills of language students https://upskillsproject.eu
- UNITE on exploiting LLMs for language learning http://site.unibo.it/unite
- !Translate on augmenting machine translation with explanations https://site.unibo.it/no-translate
- Gastrowiki on producing and fixing definitions https://site.unibo.it/gastrowiki

¹ Non exhaustive			
A. Barrón-Cedeño	DIT, PhD	2024	9 / 35

Computing at DIT

Computing Power²

• 4 NVIDIA RTX 6000 Ada

https://www.nvidia.com/en-us/design-visualization/rtx-6000

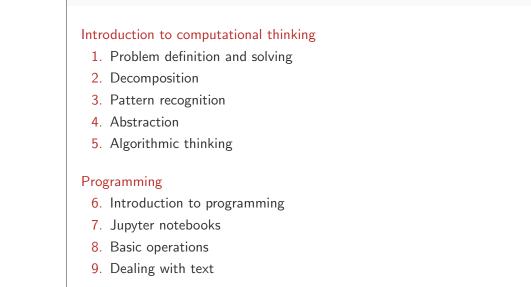
• 2 NVIDIA Quadro P4000

https://www.techpowerup.com/gpu-specs/quadro-p4000.c2930

²Dedicated to deep learning (training and out-of-the-box) A. Barrón-Cedeño DIT, PhD

2024 10 / 35

Tools


Python 3 programming language
We will use Google's Colab: https://colab.research.google.com

For (more) serious affairs, you could consider

- 1. Command line or
- Integrated development environment; e.g., Pycharm³, Eclipse⁴ or local Jupyter⁵

³https://www.jetbrains.com/pycharm/ ⁴https://www.eclipse.org/ ⁵https://jupyter.org/ <u>A. Barrón-Cedeño</u>DIT, PhD

	Contents	
A. Barrón-Cedeño	DIT, PhD	2024 13 / 35

DIT, PhD

2024 14 / 35

Lesson contents

A. Barrón-Cedeño

Computational Thinking

"[Computational Thinking] represents a universally applicable attitude and skill set everyone, not just computer scientists, would be eager to learn and use"

DIT, PhD

Jeannette M. Wing, CMU (2006)

2024

17 / 35

A few definitions

A. Barrón-Cedeño

Problem

- 1. A difficulty that has to be resolved or dealt with
- 2. A question to be answered, schoolwork exercise **Antonyms**: solution

System

1. A group of interacting or interrelated elements that act according to a set of rules to form a unified whole

Computability

1. The ability to solve a problem in an effective manner

https://en.wiktionary.org/wiki/problem https://en.wikipedia.org/wiki/System https://en.wikipedia.org/wiki/Computability

Humans and Computers

Computational methods and models give us the *courage* to solve problems and design systems

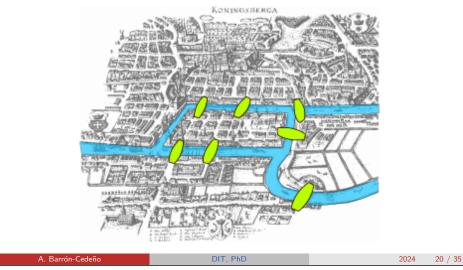
Computational thinking confronts the riddle of machine intelligence:

- What can humans do better than computers?
- What can computers do better than humans?

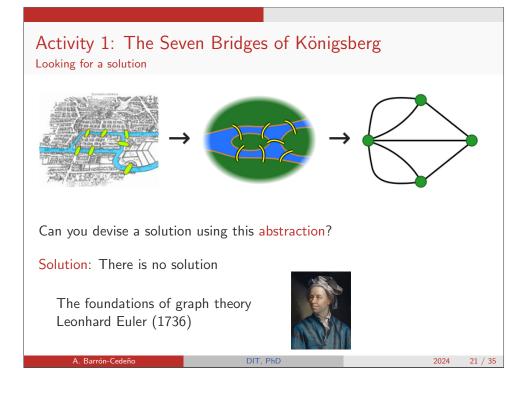
Some examples of each?

• What is computable?

A. Barrón-Cedeño


Activity 1: The Seven Bridges of Königsberg

Task: Devise a path through the city of Königsberg that would cross each of the bridges once and only once


DIT, PhD

2024

18 / 35

2024

How to deal with a difficult problem?

[By] reformulating a seemingly difficult problem into one we know how to solve, perhaps by reduction, embedding, transformation, or simulation

 $[\dots]$ using abstraction and decomposition when attacking a large complex task or designing a large complex system

Have you solved a problem using any of these techniques?

Copying a drawing?

https://www.wikihow.com/Copy-a-Drawing-or-Picture-by-Hand

What is involved in computational thinking

- Defining problems
- Solving problems
- Designing systems
- Understanding human behavior

All by drawing on the concepts fundamental to computer science

- How difficult is it to solve?
- What's the best [doable|acceptable|affordable] way to solve it?
- An approximate solution is good enough?
- False positives or false negatives are allowed?

predicted label

		positive	negative		
	positive negative	true positive false negative			
A. Barrón-Cedeño		DIT, PhD		2024	22 / 35

The thinking in computational thinking

Thinking in terms of ...

• Prevention

Do you backup your mobile phone?

There are two kinds of people

- 1. those who backup
- 2. those who have never lost all their data [mobile phone]
- Protection

Do you use a case to protect your mobile phone?

Getting ready to recover from worst-case scenarios through

redundancy	ightarrow If I keep money in my backpack, I can
	go home even if I loose my wallet
damage containm	ent $ ightarrow$ If I have an exam, I will take an earlier
	train than usual
error correction	ightarrow Before handling my report, I will pass a spell checker
A. Barrón-Cedeño	DIT, PhD 2024

A. Barrón-Cedeño

2024

Computational thinking is search, search, and more search

How do you

- Buy the best possible item on Amazon?
- Find the best match on Tinder?
- Spot the most entertaining tiktok?

How do *standard* computers win at How do you win at UNO? chess? How do you win at dominoes? Most succesful! How do you win at chess? White pla valuation of future state DIT. PhD

Computational Thinking: The three As

An iterative process based on three stages:

- Abstraction (Problem Formulation). One attempts to conceptualize a problem verbally, e.g., by trying to formulate a question such as "How does gravity work?," or through visual thinking, e.g., by drawing a diagram identifying objects and relationships
- Automation (Solution Expression). It is expressed in a non-ambiguous way so that the computer can carry it out; e.g., through computer programming (or through *prompting*?)
 - Analysis (Execution & Evaluation). The solution gets executed (by the computer) in ways that show the direct consequences of one's own thinking. Visualisations could support the evaluation of solutions

DIT, PhD

(Repenning et al., 2016)

2024

25 / 35

What computational thinking is and is not Characteristics

Conceptualising, not programming

- Computer science is **not** computer programming
- Beyond (~beside) being able to program a computer
- Thinking at multiple levels of abstraction

Fundamental skill

• A skill every human being must know to function in modern society

A way that humans, not computers, think

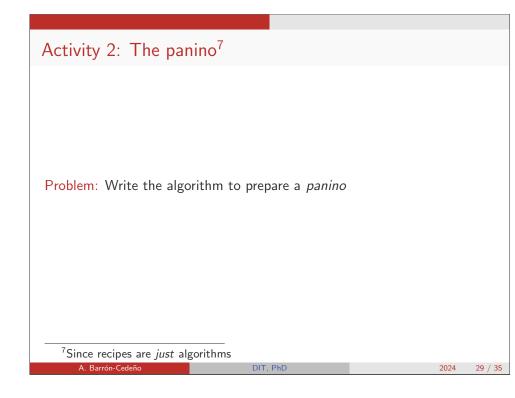
- A way humans solve problems
- Not trying to get humans to think like computers Computers are dull and boring

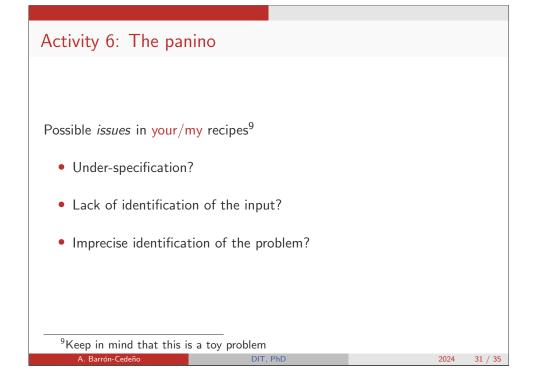
Humans are clever and imaginative Humans make computers exciting

DIT. PhD

A Barrón-Cedeño

A. Barrón-Cedeño


Algorithm An algorithm is... Definition 1 A finite sequence of well-defined (computer-implementable) instructions, typically to solve a class of problems or to perform a computation https://en.wikipedia.org/wiki/Algorithm Definition 2 An explicit, precise, unambiguous, mechanically-executable sequence of elementary instructions, usually intended to accomplish a specific purpose. Erickson (2019, p. 1)


DIT, PhD

2024 28 / 35

26 / 35

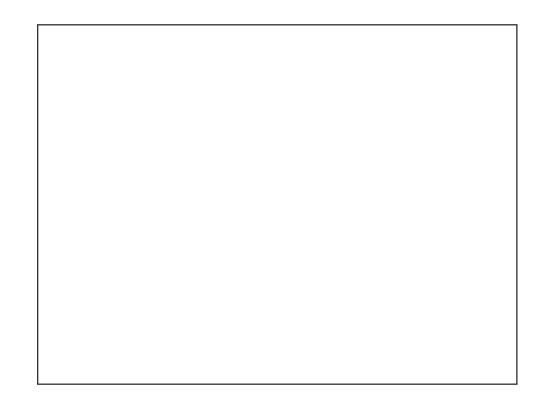
2024

Activity 6: The panino

My algorithm to prepare a *panino*⁸ Ingredients:

bread • prosciutto crudo • pecorino di Pienza • carciofini sott'olio

- 1. Cut the bread into two halves horizontally
- Add three slices of *prosciutto* on top of the bottom half
 * get sure not to go beyond the border of the bread
- 3. Evenly distribute some slices of *pecorino*
- 4. Add 3 pieces of *carciofini** get sure not to get too much oil
- 5. Put the top half of bread on top
- 6. Enjoy


⁸Via Taranto from https://ilpaninobologna.com A. Barrón-Cedeño DIT, PhD

2024 30 / 35

Describing	Algorithms				
The 4 compo	onents of an algorithm				
What:	A precise specification of the problem that the algorithm solves				
How:	A precise description of the algorithm itself				
Why:	A proof that the algorithm solves the problem it is supposed to $\operatorname{solve}^{10}$				
How fast:	An analysis of the running time of the algorithm 11				
• No particular development order					
 Write for an audience; this is not intended for yourself 					
• Write for people who is not as clever as you are ¹²					
From (Erickson, 2019, p. 11)					
¹¹ idem	d in this lesson e, yourself 6 months ago				
A. Barrón-Co					

Natural vs Programming languages	Programming language
 Natural languages An ordinary language (e.g., Italian) Written or oral It has evolved naturally in humans, usually without specific and deliberate planning¹³ Problem: ambiguity (e.g., "visiting relatives can be annoying") Programming languages Formal-born languages Specific syntactic rules that avoid ambiguous statements Sentences convey one single meaning They can have a significant degree of abstraction 	A formal language comprising a set of instructions that produce various kinds of output [given an input] ¹⁴ rules traditional data Diagram from L. Moroney's Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep Learning
¹³ Consider Klingon or Sith	¹⁴ https://en.wikipedia.org/wiki/Programming_language
A. Barrón-Cedeño DIT, PhD 2024 33 / 35	A. Barrón-Cedeño DIT, PhD 2024 34 / 35

References I		
Erickson, J. 2019. <i>Algorithms</i> . Inc	ependently published	
Repenning, A., A. Basawapatna, and N. Escherle 2016. Computational thinking tools. In 2016 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Pp. 218–222.		
Wing, J. M.	thinking. Communication	, .
49(5).55—-55.		
A. Barrón-Cedeño	DIT, PhD	2024 35 / 35

